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Abstract 

Does enhanced nitrogen input affect the structure and composition of forest vegetation? 

Results from long-term experiments at the Fernow Experimental Forest 

 
Christopher Alan Walter 

 

The effects of nitrogen (N) deposition have been studied in many ecosystems, and one general 

pattern of response that has emerged from these studies is a decline in species richness. Globally, 

anthropogenic deposition of N has more than doubled the ambient input of N in terrestrial 

ecosystems, and the rate at which humans produce reactive N continues to increase annually. As 

a result of both the current and projected future rates of N input, N deposition is a threat to 

biodiversity worldwide and is projected to contribute, along with other global change factors, to 

species extinction. To prevent the loss of biodiversity from N deposition, it is critical to 

understand the mechanisms by which N deposition causes species loss. In this dissertation I 

examined some of the direct and indirect mechanisms by which N can influence species richness 

in the forest herbaceous layer. In Chapter 1 I outline the effects of N on the herbaceous layer and 

introduce the long-term fertilization studies at the Fernow Experimental Forest that I used to 

study these effects. In Chapter 2, I tested the rigor of an undocumented method for estimating 

cover in the forest herbaceous layer. The method was very precise and, when calibrated, 

potentially accurate for comparison of cover among sites. In Chapter 3, I investigated if the 

interaction between N fertilization and light led to the dominance of Rubus spp. in stands of an 

aggrading forest. Results indicated that added N significantly enhanced the cover of Rubus spp. 

in the forest herbaceous layer only at intermediate and high light levels. In Chapter 4, I tested the 

contribution of two hypothesized mechanisms for species losses (non-random and random 

species loss) in N-fertilized, N-fertilized and limed, and unfertilized plots. Both mechanisms 

influenced species richness, with non-random loss becoming the main mechanism over time. I 

observed that advantages were conferred to some nitrophilic species – particularly Rubus spp. – 

whereas disadvantages were observed in non-nitrophilic species. Additionally, my results 

indicate that the effect of N on some herbaceous species could be mitigated with the addition of 

lime. In Chapter 5, I examined a potential indirect effect of N fertilization on the herbaceous 

layer by investigating differences in storm damage experienced by trees growing in N-fertilized, 

N-fertilized and limed, and unfertilized plots. Trees growing in N-fertilized plots were more 

susceptible to damage from a wind-storm and the extent of damage depended on the species of 

tree. There was also evidence that the addition of lime could mitigate the susceptibility of trees to 

storm damage in N-fertilized plots. As a result of this study, I hypothesized in Chapter 6 that 

differential damage to trees among fertilized and unfertilized treatments could result in 

differential changes in the herbaceous layer, either by increasing the frequency or size of canopy 

gaps, or by altering the species composition of trees. Overall, this research offers strong support 

for the idea that both direct and indirect mechanisms will influence species richness in the forest 

herbaceous layer under the projected increases in global N deposition. 
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Chapter 1. Introduction: Nitrogen deposition in temperate broadleaf deciduous forests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 

1.1 The effects of elevated nitrogen deposition on species composition 
 

Nitrogen and species composition 

Nitrogen (N) availability often constrains plant primary productivity worldwide (Vitousek and 

Howarth 1991), and N additions to terrestrial ecosystems can alter the composition of plant 

communities in ways that decrease species richness (De Schrijver et al. 2011). Nitrogen 

additions can change species composition by two primary mechanisms – accelerated mortality 

across all species (random species loss; RSL) and differential mortality between species, due to 

advantages (or disadvantages) that are manifest after changes in N availability (non-random 

species loss - NRSL; Grime 1973; Newman 1973; Goldberg and Miller 1990). These two 

mechanisms can act simultaneously under enhanced N input to change species composition in 

favor of few nitrophilic species (Gilliam 2006). So while limited N availability constrains 

productivity, alleviating N-limitation appears to constrain species richness and, by extension, 

biological diversity (Suding et al. 2005). 

 

The effects of enhanced N input in terrestrial systems are bipartite. Providing N both alleviates 

limitation of a critically limiting nutrient and acidifies soil (Driscoll et al. 2001). Nitrogen 

fertilization and acidification effects can operate concomitantly to alter plant species composition 

through RSL and NRSL. Differential competition among species emerges because some species 

may be able to utilize N to outcompete neighbors for light (Hautier et al. 2009), or are better able 

to endure the effects of soil acidification (Peppler-Lisbach and Kleyer 2009). However, the 

fertilization and acidification effects of N may, in turn, indirectly affect plant species by altering 

soil microbial communities (Waldrop et al. 2004) and decreasing litter decomposition rates 

(Janssens et al. 2010). 
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Globally, the rate of N input in terrestrial ecosystems has more than doubled due to human 

activities, including enhanced atmospheric N deposition (Galloway et al. 2004). The trend of 

ecosystem N input is also steadily increasing as the amount of human-created reactive N 

increases every year (Galloway et al. 2008). Because of its widespread deposition and its effect 

on biodiversity, N deposition has been identified as a threat to ecosystems (Sala et al. 2000). As a 

result, N inputs are likely to be one factor, among many, that may lead to an unprecedented level 

of species extinction in within the next 50 years (Tilman et al. 2001). 

 

The forest herbaceous layer 

The herbaceous layer is the stratum of vascular plants within forests that are one meter tall or 

less – including both woody and non-woody species. Herbaceous layer plants are often 

overlooked in forests studies (Gilliam 2007), yet their significance to species richness and 

diversity cannot be overstated (McCarthy 2003). While contributing to less than 1% of total 

forest biomass (Muller 2003) and less than 4% of forest net primary productivity (Muller 1978), 

the herbaceous layer is responsible for more than 80% of the total plant species richness in 

forests (Gilliam 2007). Disproportionate to its overall biomass and primary productivity, the 

herbaceous layer also mediates the timing and magnitude of forest nutrient cycling by 

contributing ca. 12% of total litterfall (Welch et al. 2007) with foliage that contains 30% more N 

and phosphorus than the foliage of trees (Muller 2003). Additionally, the forest herbaceous layer 

is home to many species that have been historically used in medicine (Krochmal 1968, Cavender 

2006). 
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The effects of N additions on the forest herbaceous layer have been understudied, relative to 

other systems (Bobbink et al. 1988, De Schrijver et al. 2011). The dearth of research on this 

forest stratum may be due to the wide variety of species found there, and the lack of species 

specific or functional group information about them (Whigham 2004). Despite the lack of 

information, a general pattern of response to N additions has emerged in which a change in 

species composition occurs that leads to an overall decline in species richness (Hurd et al. 1998, 

Small and McCarthy 2005, Gilliam 2006, De Schrijver et al. 2011, Dickson and Gross 2013, 

Gilliam et al. in press); although, this general response is likely dependent on both the exposure 

time and the cumulative load of N (Gilliam et al. 2006, Emmett 2007, De Schrijver et al. 2011, 

Clark et al. 2013). Furthermore, Gilliam (2006) has argued that these N-induced community 

changes are driven by advantages that are inherent in a few nitrophilic species, and suggested a 

conceptual framework for the other ecological interactions that can lead to these changes (Figure 

1-1). 

 

Forest trees and their interaction with the herbaceous layer 

In contrast to plants in the herbaceous layer, trees taller than one meter are responsible for most 

of the productivity and biomass in forests. The dominant stature of trees, relative to herbaceous 

layer vegetation, strongly influences species composition the herbaceous layer (Gilliam and 

Roberts 2014). In addition to controlling the amount of light that reaches the herbaceous layer 

(Nuefeld and Young 2014), certain tree species have been associated with both the composition 

and abundance of plants in the herbaceous layer by changing microclimate, increasing 

competition for nutrients, and by altering litterfall chemistry (Rogers 1981, Crozier and Boerner 

1984, Whitney and Foster 1988). However, the herbaceous layer can affect the composition of 
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overstory tree species by acting as a filter for the recruitment of seedlings (George and Bazzaz 

2014). 

 

Much of the research into the effects of N on trees focuses on growth, carbon storage, and 

physiological effects at relatively high dosages (Magill et al. 2004, Boggs et al. 2005, Thomas et 

al. 2010). And I am aware of only one experimental study providing evidence for a negative 

association between N additions and species richness in trees – a small-scale fertilization 

experiment investigating early succession in a tropical forest (Siddique 2003, Siddique et al. 

2010). The paucity of experimental evidence for the effects of N on tree composition may be due 

to the longevity of trees and the relatively slow rate of species turnover. Moreover, the indirect 

physiological effects of N on trees, and how those effects may lead to changes in tree 

composition through disturbance, is also understudied. Additions of N have led to changes in 

carbon allocation in structural tissues (Chapin 1980, Bloom et al. 1985), root mass (Nadelhoffer 

2000, Ostonen et al. 2007, Jourdan et al. 2008, Kobe 2010), and increases in height, and the 

biomass of both stems and leaves (Miller 1981, Grier et al. 1984). And all of these physiological 

effects of N may leave trees more susceptible to damage from storms. Given the effects of both 

light and tree composition on herbaceous layer species composition, increased susceptibility to 

storms in trees could potentially be a large indirect effect of N on herbaceous layer richness. 
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1.2 The Fernow Experimental Forest  
 

Location, climate, and vegetation 

The Fernow Experimental Forest (FEF) is a 1902 ha research forest located in the Allegheny 

Mountain physiographic province of north-central West Virginia, near the town of Parsons. The 

site is thought to be representative of the more than five million ha of mixed mesophytic 

broadleaf deciduous forests that can be found throughout the Central Appalachian Mountain 

region. Tree species that are common to these forests are tulip tree (Liriodendron tulipifera), red 

oak (Quercus rubra), sugar maple (Acer saccharum), red maple (Acer rubrum), black cherry 

(Prunus serotina), sweet birch (Betula lenta), and American beech (Fagus grandifolia). The soils 

at FEF are predominately fine silt loams derived from non-marine Mississippian sandstone and 

shale formations with limestone interbeds. Mean annual temperature at FEF is 9.2° C and the 

mean annual precipitation is 145.8 cm. Land-use history at FEF is well documented, and the site 

has never been converted to pasture and only experienced grazing in a relatively small area. The 

only recorded major disturbance at FEF was a site-wide timbering that took place ca. 1900. The 

lack of agricultural history could have led to a high level of richness at the site, relative to other 

experimental forests in the Northeastern U. S. (Foster et al. 1998). However, it is likely that the 

broad-scale timbering left lasting effects on vegetation and nutrient cycling (Goodale and Aber 

2001)1. 

 

 

 

                                                 
1 The description of FEF was adapted from Kochenderfer (2006). 
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Long-term study areas 

A variety of long-term experimental compartments at FEF were used in this study (Figure 1-2). 

Four untreated reference areas were used – Watershed 4 (WS4; 39 ha), Watershed 10 (WS10; 15 

ha), Watershed 13 (WS13; 14 ha), and the biological control area (BCA; 31 ha). WS4 and WS10 

have not been treated since a timber harvest in 1905. WS13 was also cut in 1905, but an 

additional minor cutting occurred in 1951 (Kochenderfer 2006). The reference watersheds – 

especially WS4 – serve as a control for the variety of treatments that have been applied on other 

watersheds at FEF. The BCA is another reference area that has also not been treated since a 

timber harvest in 1905, however, it is not a complete headwater watershed and differs in the 

underlying geology from the reference watersheds. In addition to reference areas, two 

experimental watersheds and a series of experimental plots were examined in this study.  

Watershed 7 (WS7; 24 ha) was cut in two stages from 1963-1967 and maintained barren with 

herbicide until 1969. Since then it has been allowed to recover naturally. Watershed 3 (WS3; 34 

ha) was last heavily cut between 1969 and 1972 and is currently the site of a whole-watershed 

fertilization experiment that was initiated in 1989. Since then, 35 kg N ha-1 yr-1 in the form of 

ammonium sulfate has been applied to the watershed annually by aircraft.  

 

To supplement findings from WS7 and WS3, I carried out studies in a replicated, plot-scale 

experiment known as the Long-Term Soil Productivity Experiment (LTSP). The LTSP is a 4 plot 

× 4 block randomized block design with three treatments plots and one reference plot in each 

block. Each plot is ~ 0.37 ha and contains a 0.2 ha area in which measurements are made (there 

is a 7.6-m treated buffer around each plot). The treatments are a whole tree harvest, a whole-tree 

harvest plus fertilizer (35 kg N ha-1 yr-1 as ammonium sulfate, hand applied), and a whole-tree 
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harvest plus fertilizer and lime (22.5 kg Ca as dolomitic lime, hand applied every two years in 

addition to annual fertilizer applications). The addition of lime to fertilized plots is intended to 

mitigate the acidification effect of N, so results from these plots can be interpreted as 

fertilization-only effects of N, and the difference between the limed and un-limed fertilized plots 

can be interpreted as acidification effects due to the addition of ammonium sulfate. The tree 

harvest on all treatments included the removal of all aboveground biomass from the site and 

occurred in 1996. The reference plots have not been cut since ca. 1906 (Adams et al. 2004). 
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1.3 Objectives of this study 
 

The research undertaken in this dissertation has four main objectives: 

1.  (Chapter 2) – To verify the precision and accuracy of the hand-area method of 

measuring cover in the forest herbaceous layer at the plant, population, and community 

scale.  

 

2.  (Chapter 3) – To determine if the effect of N on Rubus spp. cover in the forest 

herbaceous layer depends on the light level between an N-fertilized and unfertilized 

watershed and among N-fertilized and unfertilized plots.   

 

3.  (Chapter 4) – To test the extent to which the decline in species richness in the forest 

herbaceous layer following N fertilization was due to either random or non-random 

species loss mechanisms, and to assess the extent of which the decline was due to the 

fertilizing or acidification effects of N. 

 

4.  (Chapter 5) – To determine if there is an indirect effect of N on the forest herbaceous 

layer by measuring tree damage from wind and snow storms in a fertilized and 

unfertilized watershed, among fertilized, fertilized and limed, and unfertilized plots, and 

across a native N-availability gradient. 
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1.4 Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. A conceptual model of the linkages and feedbacks among 

biotic factors that lead to declines in forest biodiversity. Adapted from 

Gilliam (2006). 
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Figure 1-2. Location of the Fernow Experimental Forest and selected 

experimental compartments within the forest. Used with permission from 

Fowler (2014). 
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Chapter 2. A reference-based approach for estimating leaf area and cover in the forest 

herbaceous layer 
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2.1 Abstract 
 

Cover data are used to assess vegetative response to a variety of ecological factors. Estimating 

cover in the herbaceous layer of forests presents a problem because the communities are 

structurally complex and rich in species. The currently employed techniques for estimating cover 

are less than optimal for measuring such rich understories because they are inaccurate, slow, or 

impracticable. A reference-based approach to estimating cover is presented that compares the 

area of foliar surfaces to the area of an observer’s hand. While this technique has been used to 

estimate cover in prior studies, its accuracy has not been tested. I tested this hand-area method at 

the individual plant, population, and community scales in a deciduous forest herbaceous layer, 

and in a separate farm experiment. The precision, accuracy, observer bias, and species bias of the 

method were tested by comparing the hand-estimated leaf area index values with actual leaf area 

index, measured using a leaf area meter. The hand-area method was very precise when regressed 

against actual leaf area index at the plant, population, and community scales (R2 of 0.97, 0.93, 

and 0.87). Among the deciduous sites, the hand-area method overestimated leaf area index 

consistently by 39.1% at all scales. There was no observer bias detected at any scale, but plant 

overestimation bias was detected in one species at the population scale. The hand-area method is 

a rapid and reliable technique for estimating leaf area index or cover in the forest herbaceous 

layer and should be useful to field ecologists interested in answering questions at the plant, 

population, or community level. 
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2.2 Introduction 
 

Quantitative analysis of the forest herbaceous layer (all vascular plants one meter tall or less) 

relies on accurate estimates of the cover of plant species. Cover is broadly defined as the percent 

of ground area covered by individual plants, groups of plant species, or by the entire plant 

community. However, the term “cover” has many specific and specialized operational definitions 

(Wilson 2011). Regardless of which type of cover is being measured, cover data are essential in 

addressing several ecological phenomena including responses to experimental manipulations 

(Gilliam 2014), successional change (Ladwig and Meiners 2010), ecological restoration 

(D'Antonio and Meyerson 2002), comparisons of species diversity metrics (Thomas et al. 1999), 

and tracking the spread of invasive species (Didham et al. 2005).  

 

Cover has been measured using a variety of methods. The more popular methods for estimating 

cover use visual estimation to assign cover-abundance classes to plants, species, or functional 

groups, e.g. the methods of Braun-Blanquet (1964), Daubenmire (1959), and Domin and Krajina 

(see Mueller-Dumbois and Ellenberg 1974). Visual estimations are done by one or more 

observers that determine the percentage of bare ground covered by individual plants, species, or 

entire communities. Although visual methods are quick, they rely on subjective classification, 

which can lead to errors in cover estimates as large as 20% (Sykes et al. 1983; Kennedy and 

Addison 1987; Hatton et al. 1986; Tonteri 1991). Furthermore, errors in the repeatability of 

visual estimation methods are due to observer bias that cannot be overcome by observer training 

(Sykes, Horrill & Mountford 1983; Kercher, Frieswick, & Zedler 2003; but see Leps & 

Hadincova 1992).  
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More accurate methods for estimating cover exist, but also have limitations that make them less 

than ideal for use in the forest herbaceous layer.  Allometric relationships between leaf 

dimensions and leaf area (Wargo 1978) can be more accurate than visual estimations of cover, 

but this method requires both a priori knowledge of the allometry and extensive time measuring 

one or more dimensions of individual leaves.  Line-intercept sampling (Tansley and Chipp 1926; 

Kent and Coker 1992) can be an accurate technique to measure cover that employs a transect line 

stretched in a random direction across an area. An observer records, for each species, the length 

of the line that intercepts that species. The percent cover of a species is then calculated as the 

distance of the line that was intercepted by that species divided by the total distance of the line 

and multiplied by 100. Likewise, point-intercept sampling (Drew 1944; Levy and Madden 1933; 

Goodall 1953) is another technique that can be more accurate than visual estimation. In point-

intercept sampling, a gridded frame is placed above the sampling area and a pin is placed 

vertically from each grid point to the ground. The percent cover of a species is then calculated as 

the number of pins which intersect the species divided by the total number of pins and multiplied 

by 100. However, line-intercept sampling is most appropriate for more sparsely vegetated areas 

like shrublands (Spellman 2011), whereas the point-intercept method is subject to weather-

related (e.g., wind and rain) errors in measurement, in addition to being time-consuming when 

carried out in plant communities with intricate architecture and high species richness (Fenner 

1997; Stampfli 1991).  

 

Finally, using ground-based, nadir-facing photography to measure cover is a relatively new 

method that is at least as accurate as visual methods (Dietz and Steinlein 1996; Macfarlane and 

Ogden 2012). Photographic methods are done by extending a tripod or frame above the sampling 
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area and attaching a downward-facing camera. Photographs of the sampling area are taken and 

the area of plants, species, or the entire community is determined using image processing 

software. The distinct drawback of the photographic method is that it only measures the 

uppermost level of vegetation (Dietz and Steinlein 1996; Vanha-Majamaa et al. 2000). While 

this layer of vegetation – known as “top cover” (Wilson 2011) – can be a useful metric, it is not 

as robust a measurement for comparing species abundances, determining species richness and 

diversity, nor measuring vegetation close to the ground. Thus, the photographic method would 

fail to accurately measure the cover of dense, rich, and structurally complex communities, such 

as those in the temperate deciduous forest understory. 

 

A simple approach to measure cover is presented, whereby an observer compares the area of 

their hand to the area of foliar surfaces.  This approach has been used successfully to measure 

herbaceous layer cover in contrasting forest ecosystem types and experimental manipulations.  

Gilliam and Christensen (1986) used this method to assess effects of varying season and 

frequency of prescribed burning on the herbaceous layer of a Coastal Plain pine flatwoods.  It 

was used by Gilliam and Turrill (1993) and Gilliam et al. (1995) to quantify effects of forest 

harvesting on herbaceous layer communities of central Appalachian Mountain deciduous forests, 

with Gilliam and Turrill (1993) further combining visual estimates along with subsampling of 

aboveground biomass to allow for extensive non-destructive estimates of herbaceous layer 

biomass.  A more recent focus at this deciduous forest site has been on assessing the effects of 

experimental additions of nitrogen (Gilliam et al. 2006). However, despite these published 

applications, this method has yet to be assessed quantitatively with respect to its precision and 

accuracy. 
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Accordingly, the objective of this research was to test the precision, accuracy, and potential 

observer bias of the hand-area method as a rapid and reliable estimate of leaf area and cover in 

the forest herbaceous layer at three scales: (i) individual plants, (ii) individual populations in 

small plots, and (iii) the entire plant community in small plots.  
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2.3 Methods 
 

Study area and species selection 

The cover of individual plants, individual populations, and the entire plant community within 

small plots was estimated, and measured, in the West Virginia University Core Arboretum – a 

36.8-ha deciduous forest preserve in the north-central Appalachian Mountain Mountain region of 

West Virginia, USA (39.6460º N, 79.9801º W). The Core Arboretum supports predominantly 

mixed mesophytic forest stands of variable age ranging from early successional to old-growth. 

The dominant tree species include white oak (Quercus alba), red oak (Quercus rubra), shagbark 

hickory (Carya ovata), pignut hickory (Carya glabra), American beech (Fagus grandifolia), 

sugar maple (Acer saccharum), black cherry (Prunus serotina), and white ash (Fraxinus 

americana). Similar to other mesophytic forests, the herbaceous layer at the Core Arboretum is 

diverse, with over 300 non-woody vascular plants present. Vegetation in the herbaceous layer is 

primarily a mixture of annual, perennial, and biennial forbs, and woody tree seedlings. Rubus 

allegheniensis plants that were being grown at a nearby experimental farm were also included in 

this study.  R. allegheniensis plants were grown and measured at the West Virginia University 

Agronomy Farm (39.6595º N, 79.9028º W), located four miles east of the Core Arboretum. The 

ability to accurately estimate the cover of R. allegheniensis is of particular importance because 

this species has become increasingly dominant in the herbaceous layer of Appalachian Mountain 

Mountain forests following enhanced nitrogen inputs (Gilliam 2014; Chapter 3). 
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Experimental design 

In order to examine the accuracy and precision of the hand-area method (HA), herbaceous layer 

cover estimates were compared to measurements made using a leaf area meter (LI-3100, LI-

COR, Nebraska, USA). Since cover is typically defined as the proportion of the ground covered 

by a particular species (i.e. leaves that overlap are not measured separately), measuring each leaf 

of that species on a leaf area meter would overestimate cover. To work around this potential for 

overestimation, I measured a particular type of cover using the hand-area method – leaf area 

index (LAI) which is the leaf area of a plant, population, or community per unit ground area 

(Wilson 2011). Herbaceous layer LAI was estimated in situ using HA at four randomly chosen 

sites along a transect within the Core Arboretum and at the West Virginia University Agronomy 

Farm. I defined the herbaceous layer as all vascular plants one meter tall or less (Gilliam and 

Roberts 2003). Once in situ LAI estimates were completed using the hand-area method, the 

plants were clipped at the base and placed in paper bags for transport to the leaf area meter. The 

plants were then removed from the bags and the leaves were removed from each plant and 

passed through the meter to obtain measurements of true LAI. Thus, at the plant, population, and 

community scale, I had both an estimate of LAI from the hand-area method (LAIE) and the 

measurement of actual LAI (LAIA) from the leaf area meter. 

 

Within each arboretum site, four randomly selected 1-m2 circular plots were surveyed. Two sites 

were chosen to estimate the LAIE of each plant of a randomly selected species in order to test the 

accuracy of our method at the scale of individual plants. This resulted in the use of 21 plants 

from four species (Solidago spp., Acer rubra, Prunus serotina, and Carya glabra). At the same 

two sites I also estimated the total LAIE of each species found in every plot in order to assess the 
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accuracy of our method at the scale of individual populations. A total of 20 different species 

were used at the population scale, seven tree species, two woody vine species, and 11 herbaceous 

species. In the other two sites, I estimated only the total LAIE of all plants regardless of species 

in order to assess the accuracy of our method at the scale of the entire plant community found in 

the small plots. Finally, to strengthen our assessment of this method for estimating the leaf area 

of individual plants, I used hand-area method to estimate the LAIE of 42 R. allegheniensis plants 

that were being grown in pots at the West Virginia University Agronomy Farm under a variety of 

light and fertilizer treatment combinations. At each scale, the plants were harvested and analyzed 

with a leaf area meter to measure LAIA. 

 

Hand-area method 

The hand-area method (HA) compares the area of a hand with the area of the individual leaves of 

a plant, a species, or a community. An observer places a hand, palm-down and fingers closed, 

directly above the foliar surface of a plant. The observer then determines the size of leaf surfaces 

in relation to their hand (Figure 2-1), either individual leaves or clusters of smaller leaves in 

increments as small as 0.5 hands. After the total leaf area for each plant was estimated using HA, 

an observer should have touched all leaves of that plant, comparing their hand area to the leaf 

area. Likewise when estimating the LAIE of a population, the observer would have touched all of 

the leaves of that species and all of the leaves in the entire plot when estimating the LAIE of a 

plant community. To improve both the precision and accuracy of the method, two observers 

made hand-area estimates separately (either at the plant, population, or community scale), then 

compared their estimates and recorded the average of the two estimates – a process known as  

active feedback (Wintle et al. 2013). Observers used only their dominant hand for all 
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measurements and traced the outline of their hands on paper and analyzed them using the leaf 

area meter to determine the actual area of their hands.  

 

Statistical analysis 

To assess both the precision and accuracy of the hand-area method, LAIE was regressed against 

LAIA at the individual plant, population, and community scales. The precision of HA was 

evaluated using the coefficient of determination (R2) from regression models, with higher R2 

values indicating a greater precision because LAIE explained more of the variance in LAIA.  

 

The accuracy of the hand-area method was assessed by comparing the slopes of regression lines 

to the 1:1 line using two-tailed, one-sample t-tests. I determined the 1:1 line using the weighted 

average of the measured hand areas of all observers. The weighted average was used because 

some pairs of observers measured more plants or plots than others. Slopes significantly lower 

than the slope of the 1:1 line indicate that HA overestimated LAIA, and slopes significantly 

higher than the 1:1 line indicated HA underestimated LAIA. To test if the accuracies were equal 

across the plant, population, and community scales, the slopes of regression lines were compared 

to each other in a pairwise fashion using multiple analysis of covariance tests (ANCOVA; model 

effects: LAIE and LAIE × scale) without an α-level correction for family-wise error. An α-level 

correction was not used because it inflates the type-II error rate and increases the likelihood of 

reporting falsely that HA is equally accurate across all scales (Saville 1990).  
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In addition to testing the precision and accuracy of our method, I also tested for any species-

related and observer biases. I tested for a species-related bias at the individual plant and 

population scales by comparing the residuals of the LAIA vs. LAIE regression line in a one-way 

analysis of variance (ANOVA; model effect: species). Species with significant negative mean 

residual distances indicated that HA overestimated LAIA relative to the regression, and species 

with significant positive residual distances indicated HA underestimated LAIA. Species that were 

only observed once were not included in residual analysis because ANOVA requires a sample 

size of at least two for each species comparison. A post hoc Tukey’s honest significant difference 

(THSD) test was used to compare the mean residual distance among species to determine 

pairwise differences.  

 

A preliminary test of the effect of leaf morphology on the accuracy of HA was also made at the 

population scale. The LAIA was regressed against LAIE for species with three or more 

occurrences at the population scale – a total of six species – and the slopes of the lines (i.e. the 

accuracies) were compared using an ANCOVA. I consider this test to be an initial assessment 

because I had only 22 observations that could be used to create regression lines (LAIA vs. LAIE) 

for six species. The leaf length-to-width ratio was used as an index of leaf morphology for each 

species. Leaf length was defined as the length of the axis from leaf petiole to leaf tip, and leaf 

width was defined as the length of the longest perpendicular axis. I determined the mean ratio for 

10 leaves of each species using plants growing in the Core Arboretum or using specimens from 

the West Virginia University Herbarium. To determine if leaf morphology had an effect on the 

accuracy of HA, the slopes of the regression lines of LAIA vs. LAIE were regressed against the 
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leaf length-to-width ratios, and that relationship was assessed using R2 and a one-sample t-test to 

determine if the slope was different from zero. 

 

To test for observer bias, an ANCOVA (model effects: LAIE and LAIE × observer pair) was used 

to determine if the accuracy of HA depended on the observer pair at each scale. If any significant 

effects of the LAIE × observer pair term were found, then they would indicate a bias in HA for at 

least one observer pair. Two groups of distinct observer pairs were compared at the individual 

plant scale, three at the community scale, and two at the population scale. Due to the limited 

degrees of freedom and the complexity of the model, the ANCOVA test at the plot scale could 

only be applied at seven of the eight plots where all plants were measured together. Furthermore, 

observer bias could not be tested for leaf area estimates of individual R. allegheniensis plants at 

the West Virginia University Agronomy Farm because the same observer pair measured all of 

the plants. Two individual plants from the arboretum were identified as outliers using a jackknife 

distance test based on the multivariate mean of LAIE and LAIE, and they were removed from all 

analyses. All statistical analyses were performed using SAS JMP (SAS Institute 2013), and 

transformations were applied when appropriate to normalize residuals and meet parametric test 

assumptions.  
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2.4 Results 
 

Hand-area precision 

Regression of LAIA vs. LAIE at the individual plant, population, and plant community scales in 

the Core Arboretum produced R2 values of 0.97, 0.93, and 0.87, respectively (Figure 2-2). At the 

scale of the entire plant community, the leaf area in eight plots was determined by estimating the 

cover of all plants regardless of species, and the community-scale leaf area of the remaining 

eight plots was determined by adding the values for the constituent populations. An ANCOVA 

of LAIA vs. LAIE for entire plant communities revealed that the effect of HA on LAIA did not 

depend on whether the leaf area of the plants in the plots were estimated together or calculated 

by adding the estimates obtained for individual populations (one line for both cases in Figure 2-

2d). However, the regression of LAIA vs. LAIE in the eight plots where the leaf area of the plants 

was estimated together had an R2 of 0.80, and in the eight plots where the total leaf area was 

estimated by adding the values for the constituent populations, the R2 was 0.95.  For individual 

R. allegheniensis plants grown at the agronomy farm, the R2 was 0.94.  

 

Hand-area accuracy 

For individual plants, populations, and entire plant communities, one-sample t-tests confirmed 

that the slopes of the regression lines of LAIA vs. LAIE were all lower than the 1:1 line that was 

calculated using the weighted mean hand-area of observer pairs (i.e., LAIE overestimated LAIA; 

Figure 2-2). For individual plants in the Core Arboretum, the slope was 39.4% lower than the 1:1 

line (t = 20.438, p < 0.0001).  However, for the individual R. allegheniensis plants at the 

agronomy farm, the slope was only 16.5% lower (t = 3.914, p < 0.0001). At the population scale, 

the slope of the regression line of LAIA vs. LAIE was 41.8% lower than the 1:1 line (t = 20.981, p 
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< 0.0001), and at the community scale, it was 36% lower (t = 13.188, p < 0.0001).  Pairwise 

ANCOVA tests revealed that the slopes of the regression lines at the plant, population, and 

community scales in the Core Arboretum were not different from one another, and the mean 

difference between the 1:1 line and realized slopes was a decrease of 39.1%.  

 

Species-related bias 

At the plant scale, an ANOVA determined that there were no differences among species in mean 

deviation from the regression line of LAIA vs. LAIE – and thus no detectable species-related bias. 

However, at the population scale, there was an effect of species on residual distance (F = 2.838, 

p = 0.0117; Figure 2-3), and thus a species-related bias. Specifically, the post hoc THSD 

revealed that the species Stellaria pubera had a residual distance that was lower than Acer rubra 

(p = 0.0029), Carya glabra (p = 0.0192), and Acer saccharum (p = 0.0339). At the population 

scale, an ANCOVA determined that there was a difference among species in the slopes (i.e. 

accuracies) of LAIA vs. LAIE (F = 4.262 p = 0.0245; Figure 2-4) and a further regression 

revealed a negative trend between the species slopes (from the regression of LAIA vs. LAIE) and 

leaf length-to-width ratio (t = 5.23, p = 0.0871; R2 = 0.56; Figure 2-4 inset). 

  

Observer pair bias 

The ANCOVA models testing observer pair bias found no effect of observer pair on the 

relationship between LAIA and LAIE at the scale of the individual plant, population, or entire 

plant community. Individual hand areas ranged from 115.7-159.9 cm2, and mean hand areas of 

observer pairs ranged from 122.3-124.2 cm2. 
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2.5 Discussion 
 

The hand-area method of estimating herbaceous layer LAI in a deciduous forest was found to be 

very precise at the scale of individual plants, plant populations, and entire plant communities. As 

a result, this method should be very useful for quickly assessing the relative differences in leaf 

area index and cover that can occur through time, space, or in response to experimental 

treatments. For studies requiring accurate estimates of leaf area index and cover, this method 

should also be useful.  I found that HA overestimated LAIA at each scale, but the degree of 

overestimation was consistently ~39.1% across the scales I examined at the Core Arboretum 

(Figure 2-2b-d). Thus, at this site, accurate estimates of leaf area can be obtained by simply 

subtracting 39.1% from each LAIE value in the dataset – or, equivalently by multiplying each 

LAIE value by 0.609.  For other investigators, and sites, it is recommended that a simple 

calibration be performed by harvesting a subset of the plants surveyed and measuring the actual 

leaf area as was done in this investigation. 

 

Our results also suggest that greater accuracy might be achieved when the reference area (a hand 

in this case) more closely matches the size and shape of the leaves being measured.  For 

example, at the population scale, the leaf area of Stellaria pubera was overestimated relative to 

estimates obtained for the three tree species in the residual analysis (Figure 2-3), and it was the 

most over-estimated when compared to five other species in the leaf morphology analysis 

(Figure 2-4). The leaves of S. pubera are typically less than 7.6 cm long and 3.2 cm wide, grow 

in opposite arrangement around a central stem, and are lanceolate in shape and sessile at the leaf 

base. By comparison, the leaves of tree and vine seedlings are typically more than twice as long 

and three times as wide, are more ovate or pinnate, and are more distinct from stems because 
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they grow from petioles. Thus, the morphological characteristics of the trees and vines more 

closely resemble those of a hand and should improve the accuracy of the hand-area method. In 

fact, the average length to width ratio of the observer’s hands in this study was 1.79 – equal to 

the leaf length-to-width ratio of the most accurately estimated plant at the population scale, 

Parthenocissus quinquefolia (Figure 2-4). The idea that leaf morphology affects the accuracy of 

estimation techniques is also supported by Sykes et al. (1983), who found that observer error 

using visual estimation techniques was highest among plants with smaller and thinner leaves.  

Leaf morphology is also the most likely reason why greater accuracy was achieved for R. 

allegheniensis plants (Figure 2-2a). R. allegheniensis leaves are typically palmately compound 

with larger terminal leaflets and smaller lateral leaflets, and the leaflet configuration is very 

similar to the shape of a hand. Thus, the use of multiple reference areas for different types of 

leaves might be warranted but the additional effort would be unnecessary if, as in this study, a 

simple calibration (subtracting 39.1% from each LAIE observation) results in a robust correction 

factor.  

 

The effect of leaf morphology on estimation accuracy is not unique to HA. Visual estimation 

techniques attempt to minimize this error by selecting areas in which to place plots with a priori 

knowledge of species composition (Mueller-Dumbois and Ellenberg 1974). The logic behind this 

practice is that errors created due to particular leaf morphology will be repeated in subsequent 

plots. However, practitioners of HA have the potential to disregard the practice of picking plots a 

priori, and quantitatively correct for differences in morphology by using the relationship 

between the slope of LAIA vs. LAIE and a measure of leaf morphology of that species (Figure 2-
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4 inset) to estimate a species-specific correction factor – instead of applying the simpler 

calibration factor, mentioned above, to all species at once. 

 

In addition to the precision and potential accuracy of this method, it is noteworthy that there was 

no over- or underestimation bias among observer pairs despite differences among the observers 

in both their experience and hand area.  I believe the lack of an observer bias using the hand-area 

method may be due, in part, to the fact that it employed active feedback which is known to 

improve measurement accuracy (Wintle et al. 2013). The fact that some observer pairs were 

trained immediately prior to sampling, while others were experienced practitioners, is an 

indication that this method is not only robust with respect to its accuracy and precision, but also 

that it is easy to learn.  

 

The results of this study indicate HA is a precise, accurate (when calibrated), easily learned, and 

convenient way to assess LAI and cover in the forest herbaceous layer. Therefore, HA should be 

useful to ecologists who are examining questions relevant to individual plants, plant populations, 

and entire plant communities in either field or experimental settings. 
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2.6 Tables and Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1. Diagram illustrating the hand-area method for measuring the leaf area index of a) 

Smilax rotundifolia, approximately 0.5 hands; b) Dennstaedtia punctilobula, approximately one 

hand; and c) Acer pensylvanicum, approximately 2 hands. Plant images from Britton and Brown 

(1913).  
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Figure 2-2. Comparisons of estimated leaf area index measured using the hand-area method vs. 

actual leaf area index measured via leaf area meter for: a) individual plants of Rubus 

allegheniensis; b) individual plants of four different species (Solidago spp., Acer rubra, Prunus 

serotina, & Carya glabra); c) populations of plants (20 different species) within 1-m2 plots; and 

d) the entire plant community within 1-m2 plots. Dashed lines are 1:1 lines, obtained using the 

weighted average hand area of observer pairs. Open circles in graph d indicate where all plants in 

1-m2 plots were measured together and closed circles are the sum of the populations within 1-m2 

plots. The slope of the 1:1 line equals the weighted mean area (cm2) of the hands used to make 

the estimates.  
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Figure 2-3. The mean residual distance (and SE) by species for regressions of leaf area index 

(estimated using the hand-area method) vs. leaf area index (measured via meter). Species are 

presented in ascending order from left to right according to the average leaf area per plant and 

dissimilar letters indicate significant differences (p < 0.05).  
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Figure 2-4. Regression lines comparing estimated leaf area index measured using the hand-area 

method vs. actual leaf area index measured using a leaf area meter for six separate species at the 

population scale. The numbers in parentheses indicate the leaf length to leaf width ratio. Inset: 

Leaf length to leaf width ratio vs. the slope of the estimated LAI vs. actual LAI for the same six 

species at the population scale. 
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Chapter 3. Nitrogen fertilization interacts with light to increase Rubus spp. cover in a 

temperate forest 
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3.1 Abstract 
 

Nitrogen additions have caused species composition changes in many ecosystems by facilitating 

the growth of nitrophilic species. After 24 years of nitrogen fertilization in a 40 year-old stand at 

the Fernow Experimental Forest (FEF) in Central Appalachia, USA, the cover of Rubus spp. has 

increased from 1 to 19% of total herbaceous-layer cover. While Rubus spp. are generally 

associated with high light conditions that are created after a disturbance event, some species are 

also known to be nitrophilic. I investigated whether the increase in cover in Rubus spp. was due 

to either nitrogen, light, or an interaction between these two factors. To test for the effect of 

nitrogen and light on Rubus spp. cover, I compared the relative cover of Rubus spp. among 

fertilized and un-fertilized watersheds and among fertilized and un-fertilized experimental plots, 

using estimates of canopy openness as a covariate. Rubus spp. plants were also grown ex situ in a 

field experiment using a 2-way factorial design, measuring leaf area, and using two levels of 

nitrogen and three levels of light. The effect of nitrogen fertilization on relative Rubus spp. cover 

depended on canopy openness in the watersheds (F = 17.57, P = 0.0002) and experimental plots 

(F = 25.04, P = 0.0047). A similar effect for leaf area was also observed among plants grown in 

the field experiment (F = 4.12, p = 0.0247). Our results confirm that, although Rubus spp. at FEF 

are nitrophilic, they require sufficient light to increase their cover. Furthermore, the dominance 

of Rubus spp. in the herbaceous layer likely contributes to the observed decline in species 

diversity. 
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3.2 Introduction 
 

Plant community changes in response to nitrogen (N) amendments have been widely observed in 

grasslands and heathlands (Phoenix et al. 2012; Southon et al. 2013), but less commonly in forest 

herbs (Gilliam 2006). However, the herbaceous layer (defined as vascular plants < 1-2 m above 

the ground) comprises, on average, more than 80% of the total plant species richness in forests 

(Gilliam 2007). Existing studies on forest herbaceous-layer communities in response to increased 

N deposition have documented a general decline in the cover of many species and an increase in 

the cover of nitrophilic species (Dirnböck et al. 2014; Suding et al. 2005).  Furthermore, a 

negative relationship between species richness and N availability has been reported in many 

ecosystems (De Schrijver et al. 2011; Field et al. 2014).  Nitrogen additions can change the 

herbaceous-layer community by increasing the likelihood of mortality in all species and 

simultaneously select for survival and growth of nitrophilic species (Abrams et al. 1995; Grime 

1979; Rajaniemi 2002).  

 

In the Central Appalachian Mountains at the Fernow Experimental Forest (FEF), chronic N 

fertilization has changed the species composition of the forest herbaceous layer in favor of one 

particular genus. In a fertilized watershed within the forest, the relative cover of Rubus spp. (the 

percent of total herbaceous-layer cover that is Rubus spp.) has significantly increased 

concomitantly with a substantial decrease in species diversity (Gilliam et al. 2016). Increases in 

Rubus spp. at other sites (hereafter referred to as Rubus) are mainly attributed to increases in 

light (Landhausser et al. 1997) and this genus is often dominant in recently disturbed areas 

(Hughes & Fahey 1991; Peterson & Pickett 1995; Peterson & Carson 1996). However, many 

species of Rubus are classified as nitrophilic (Hill et al. 1999) and forest disturbances that 
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enhance light availability to the forest floor typically increase N availability (Vitousek and 

Melillo 1979). Vegetation surveys at other sites have also documented an increase in Rubus 

cover in response to N additions (Brunet et al. 1998; Falkengrengrerup 1993; Kellner 1993), and 

N fertilization in large quantities has indirectly increased the amount of light received by the 

herbaceous layer through tree leaf and branch mortality (Magill et al. 2004). Therefore, increased 

N availability could both directly and indirectly affect the dominance of Rubus, and it seems 

equally likely that increases in the cover of Rubus could be primarily the result of more light, 

more available N, or an interactive effect between these two factors. 

 

There is experimental evidence that a combination of both N and light are important in Rubus 

germination and growth. Jobidon et al. (1989) observed that the application of mulch in a 

clearcut balsam fir-spruce (Abies balsamea, Picea mariana) forest – a practice designed to 

decrease soil-available N – decreased the cover, frequency, and leaf nitrogen content of Rubus 

idaeus. In a separate study, N fertilization without canopy disturbance in a mature balsam fir-

spruce forest stimulated germination of dormant Rubus idaeus seeds (Jobidon 1993). However, 

because of very low light under the closed canopy, the Rubus idaeus seedlings that emerged 

survived less than one year after germination (Jobidon 1993). These results suggest the 

nitrophilic nature of Rubus, and underscore the importance of canopy openness to their survival.  

 

Given previous observations on the effect of both N and light on the growth of Rubus, the 

purpose of this study was to determine if the effect of N on Rubus cover depends on the light 

level in (i) the forest herbaceous layer of both fertilized and unfertilized treatments, and (ii) 
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among transplanted plants grown in a smaller-scale experiment. These questions were examined 

at FEF in two long-term fertilization experiments – utilizing the natural variation in canopy 

openness – and among Rubus plants that were transplanted and grown ex situ at a farm site in 

both fertilized and unfertilized soils, and with different levels of artificial shading to 

experimentally control differences in both N fertilization and light. 
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3.3 Methods 
 

Study sites & experimental design 

The Fernow Experimental Forest (FEF) is a 1902-ha research forest located in the Allegheny 

Mountain physiographic province of north-central West Virginia, near the town of Parsons 

(Kochenderfer 2006). Within FEF, two watersheds and a long-term, replicated experiment were 

chosen to carry out this study. Watershed 3 (WS3; 34 ha) was clearcut between 1969 and 1972 

and is currently the site of a whole-watershed fertilization study that was initiated in 1989. Since 

then, 35 kg N ha-1 yr-1 in the form of ammonium sulfate has been applied to the watershed 

annually by aircraft (Adams et al. 2006). Watershed 7 (WS7; 24 ha) was clearcut in two stages 

from 1963-1967 and maintained barren with herbicide until 1969. Since 1969 WS7 has been 

allowed to recover naturally and serves as the unfertilized reference for WS3 in this study. To 

control for differences in aspect between watersheds, areas within both WS3 and WS7 were 

classified based on three aspect strata: 1 – “northeast”, 30-90°; 2 – “south”, 150-210°; and 3 – 

“northwest”, 270-330°. In each watershed, eighteen 10-m radius plots were randomly chosen 

from an existing network of study sites in order to establish six plots for each of the three aspect 

classifications. Within each plot, five 1-m2 circular sub-plots were randomly selected based on 

polar coordinates to measure the herbaceous-layer cover and averaged together in the analysis to 

the plot-level. I defined the herbaceous layer as all vascular plants that were growing one meter 

above the soil surface or less (Gilliam and Roberts 2014). 

 

The Long-Term Soil Productivity Experiment (LTSP) is a randomized block design that includes 

four plots of each fertilized and unfertilized treatments (Adams 2004). Each plot is ~ 0.37 ha and 

contains a 0.2 ha area in which measurements are made (7.6 m treated buffer around each plot). 
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All aboveground biomass was removed (whole-tree harvesting) in both the unfertilized (WT) in 

and the fertilized plots (WT+NS) in LTSP in 1996. Since then, WT+NS plots have been treated 

with 35 kg N ha-1 yr-1 as ammonium sulfate, applied by hand. In the LTSP, the four replicate 

plots of each treatment (WT, WT+NS) were used. Within each of these plots, four 1-m radius 

subplots were randomly located to measure Rubus cover. Since the entire LTSP experiment 

shares the same aspect, no stratification based on aspect was necessary. In both the watershed 

and LTSP experiments, variation in canopy cover was assumed to be caused by ordinary forest 

dynamics. I also assumed that differences in soil N availability were not directly affected by 

canopy openings (e.g. treefalls which increased soil N) – a potential factor-on-factor interaction.  

 

To test the relationship between N fertilization and canopy openness in a controlled setting and 

to mitigate any potential factor-on-factor interaction, Rubus plants were grown ex situ in a two-

way factorial experiment with two levels of N-fertilization and three levels of shade. Rubus 

rhizomes were collected on May 27, 2014 from an untreated area adjacent to the LTSP plots and 

grown in full sunlight at the West Virginia University Agronomy Farm (39.6606º N, 79.9046º 

W; Sadhu 1989). After the rhizomes were taken from FEF, they were shaken free of soil, 

trimmed of fine roots, and weighed. The rhizomes were then randomly assigned a treatment and 

planted in 12.7 cm wide × 18.4 cm tall circular, plastic pots. The potting soil was a 2:1 mixture 

of PRO-MIX BX (sphagnum moss, perlite, and vermiculite) and Turface MVP (clay soil 

conditioner). To prevent the pots from drying quickly, the entire pot was buried so that the top of 

the pot was level with the top of the soil in the farm field. The pots were planted randomly in a 

4×15 grid with a 1.5 m space between each pot to prevent shading between the plants. Sixty 

plants were initially planted – ten receiving each treatment – but some rhizomes never sprouted 
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canes and others died while sprouting at the beginning of the experiment. The final number of 

replicates for each treatment was five for low-shade/low-N, nine for low-shade/high-N, nine for 

medium-shade/low-N, six for medium-shade/high-N, six for high-shade/low-N, and seven for 

high-shade/high-N (Figure 3-1). The rhizomes were planted on May 29 and the plants were 

harvested on July 30, 2014.  

 

The shade levels in the field experiment were achieved by placing wire cages above the pots and 

covering all sides of the cages with shade cloth. The shade cloth levels were selected based on 

the nominal percentage of direct light that they block and were used to simulate the broad range 

of light levels from canopy openings that are found in both WS3 and WS7. The low light level 

used 90% shade cloth, medium light level used 60% shade cloth, and the high light level used 

30% shade cloth. The actual light levels achieved by these treatments were measured using 

HOBO pendant light sensors, model UA-002-64 (Onset Computer Corporation, Bourne, MA, 

USA). Sensors were placed randomly in two pots of each shade treatment and one sensor was 

placed in full light to measure ambient levels. The light intensity was measured in Lux over 25 

days by each of the sensors and the mean intensity recorded for each light treatment level was 

compared to the mean intensity measured for ambient light. These measurements revealed that 

the low light level received 5% of ambient light, the medium light level received 11.4% of 

ambient light, and the high light level was received 50% of ambient light. The two N-fertilization 

levels in the factorial experiment were designed to match the soil N availability in both the 

unfertilized WS7 (low N) and the fertilized WS3 (high N). Nitrogen was applied to the plants 

using a nutrient solution modified from Johnson et al. (1957; Table 1) and the low N level was 

half of the concentration of 200 µM N found in the soil water of a reference area at FEF 
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(Edwards et al. 2006). The nutrient solution in the high N level was the same except that it 

included an additional 35 kg N ha-1 as ammonium sulfate over the duration of the experiment – 

the same amount of fertilizer that WS3 receives annually. The nutrient solution was delivered to 

the plants in ten separate 500-ml applications over the course of the experiment. Therefore, in 

each application, the low N level plants received 100 µM of N, and the high N level plants 

received 1,244 µM of N (Figure 3-1). 

 

Forest experiment measurements 

Plant cover was measured in each subplot by comparing the area of the plant with the area of an 

observer’s hand. Observers estimated the cover of herbs by placing a hand, palm-down and 

fingers closed, directly above the foliar surface of a plant. The observer then determined the size 

of the leaf in relation to their hand. The units of measure were “hands” and observers worked in 

pairs to estimate cover separately, then averaged their estimates together to improve precision 

through active feedback (Wintle et al. 2013). This method proved to be very precise when hand-

measured leaves were regressed against the same leaves measured using a leaf area meter 

(average R2 = 0.94 for individual Rubus plants; Walter et al. 2015; See Chapter 2). Two 

categories of plant cover were measured in each subplot – the cover of Rubus, and the total cover 

of all herbaceous-layer plants. The vast majority of Rubus plants at FEF are Rubus 

allegheniensis, but Rubus idaeus has also been observed. Since Rubus species hybridize and can 

be difficult to identify in the field, Rubus cover was measured on plants identified at the genus 

level.  The relative Rubus cover was calculated as the fraction of all herb cover in a plot that was 

Rubus. To determine the effect of canopy light on Rubus cover in both the watersheds and LTSP 

plots, I relied on the strong association between the amount of photosynthetically active radiation 



 

53 

that reaches the forest floor and canopy openness (Becker et al. 1989; McCarthy and Robison 

2003; Rich 1990). A spherical densiometer was used to measure the canopy openness inside each 

of the 1-m2 subplots. One densiometer reading was taken in each of the cardinal directions in the 

subplot and averaged to estimate the mean canopy openness. The relative Rubus cover and 

canopy openness were measured in the watersheds and LTSP WT and WT+NS treatments in 

June 2012.  

 

Field experiment measurements   

To test for differences in plant cover, the leaf area of each Rubus plant was measured using a leaf 

area meter (LI-3100, LI-COR, Nebraska, USA). The height and dry biomass of each plant was 

also measured. To determine if N fertilization led to an increase in leaf chlorophyll and/or leaf N, 

the relative leaf chlorophyll content was estimated using a SPAD meter (SPAD-502, Spectrum 

Technologies, Aurora, IL, USA). SPAD was measured and on the terminal leaflet of five leaves 

on each plant and averaged to obtain a mean SPAD value for each plant. SPAD measurements 

are unit-less, and provided a non-destructive, relative measure for leaf chlorophyll and nitrogen 

content. To measure leaf N concentrations directly, the leaves of each plant were dried, ground, 

and analyzed for their N content using a Carlo Erba NCS elemental analyzer, model NA 1500.  

Total leaf N for each plant was then calculated by multiplying the concentration of leaf N (% N 

by mass) by the total leaf mass per plant.  
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Statistical analysis 

To test if the effect of N fertilization on Rubus cover depended on canopy openness in the forest 

measurements, a two-way analysis of covariance (ANCOVA) was performed for the two 

watersheds (WS3 and WS7) and both LTSP treatments (WT and WT+NS). The order of the 

relationship (linear vs. polynomial) between canopy openness and relative Rubus cover in the 

ANCOVA models was determined by choosing models with the lowest corrected Akaike 

information criterion statistic. One-way analysis of variance tests (ANOVA) were used to 

compare the mean relative Rubus cover and mean canopy openness between the watersheds and 

LTSP treatments. To test if the effect of N fertilization on Rubus leaf area depended on the light 

level in the ex situ field experiment, a two-way ANCOVA was used to test for differences in leaf 

area, SPAD, percent leaf N, and total leaf N. Initial rhizome mass was used as a covariate in the 

ANCOVA models to correct for any contributions to growth from larger rhizomes. Student’s t-

tests were used for post-hoc pairwise comparisons of means because family-wise error correction 

in multiple comparison tests inflates the probability of Type II errors (Saville 1990) and because 

of the relatively small number of comparisons. All statistical analyses were performed using SAS 

JMP (SAS Institute 2013). Transformations to normalize residuals and independent samples 

ANOVA tests were applied when appropriate. 
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3.4 Results 
 

Forest experiments 

The effect of N fertilization on relative Rubus cover in the watersheds depended on canopy 

openness (F = 17.57, P = 0.0002). Specifically, the mean relative Rubus cover in WS3 was 

84.2% higher than in WS7 at the highest level of canopy openness, but equal at the lowest level 

of canopy openness (Figure 3-2a). The best fit ANCOVA model included watershed (WS), 

canopy openness (C), WS × C, C2, and WS × C2 effects. The effect of canopy openness on 

relative Rubus cover in the LTSP treatments (WT compared to WT+NS) was also dependent on 

fertilization (F = 25.04, P = 0.0047). At the highest canopy openness, the relative Rubus cover 

was 85.7% higher in WT+NS when compared to the WT, but equal at the lowest level of canopy 

openness (Figure 3-2b). The best fit ANCOVA model for LTSP included the effects of treatment 

(T), C, and T × C. Overall, the mean relative Rubus cover was higher in both WS3 (t = 5.71, P < 

0.0001) and the LTSP WT+NS treatment (t = 2.03, P = 0.0444) when compared to their 

unfertilized counterparts, WS 7 and LTSP WT. However, the average canopy openness did not 

differ between the fertilized and unfertilized watersheds nor between the LTSP treatments. 

 

Field experiment 

The effect of N fertilization on Rubus leaf area per plant depended on the light level (F = 4.12, p 

= 0.0247). The initial rhizome mass also had a significant positive effect on leaf area (F = 5.46, p 

= 0.0253). Post hoc comparisons using t-tests determined that leaf area at the high-N/high-light 

treatment was significantly greater than the leaf area of the plants grown at low-N/high-light (t = 

2.13, p = 0.0401).  Specifically, the mean leaf area at the high-N/high-light treatment was 
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130.2% greater than in the low-N/high-light treatment (Figure 3-3). Additionally, the t-tests 

revealed that mean leaf area at the high-N/high-light treatment was 83.3% greater than at the 

high-N/low light treatment (t = 2.04, p = 0.0489). The final ANCOVA model included light (L), 

nitrogen (N), initial root mass, and L × N as effects.  

The effect of N fertilization on Rubus SPAD and percent leaf N did not depend on the light level 

and N fertilization alone did not have an effect. However, light did have a positive effect on both 

SPAD (F = 4.85, p = 0.0138) and percent leaf N (F = 10.19, p = 0.0003; Figure 3-4). Post hoc t-

tests determined that SPAD was 16.9% higher at the high-light level when compared to low-light 

(p = 0.0231) and percent leaf N was 35.9% higher at the high-light level when compared to low-

light (t = 5.12, p < 0.0001; Figure 3-4). Percent leaf N was also found to be higher at the high-

light level when compared to medium-light (t = 3.00, p = 0.0047) and higher at medium-light 

when compared to low-light (t = 2.25, p = 0.0302). The effect of N fertilization on Rubus total 

leaf N did not depend on the light level and there were no additive effects of light or N-

fertilization on the total leaf N. Yet, there was a significant positive effect of initial root mass on 

total leaf N (F = 14.13, p = 0.0010). Light (L), nitrogen (N), initial root mass, and L × N were 

included as effects in the final ANCOVA models for SPAD, percent leaf N, and total leaf N. 
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3.5 Discussion 
 

In this study, I investigated the effect of N and light on the cover of Rubus in forest and field 

experiments. Chronic N fertilization in the forest experiment led to a striking increase in the 

relative Rubus cover in the fertilized watershed and LTSP plots. Species of the Rubus genus are 

typically found in abundance after forest canopy disturbances, when light levels are high 

(Hughes and Fahey 1991; Peterson and Carson 1996; Peterson and Pickett 1995; Phillippe et al. 

2010). However, in the absence of forest disturbances or differences in canopy openness between 

fertilized and unfertilized treatments, the relative Rubus cover was considerably higher in the 

fertilized treatments (Figure 3-2). Yet, light was indeed an important factor, as the effect of N on 

the cover of Rubus depended on canopy openness. Therefore, the increase in the relative Rubus 

cover in the fertilized treatments was only realized because of the increase in cover in areas with 

higher canopy openness.  The differential effect of N and light was also observed among Rubus 

plants grown the field experiment. At the highest light level in the field experiment, Rubus leaf 

area was substantially higher in the plants grown at high-N when compared to those grown at 

low-N (Figure 3-3). These results demonstrate that Rubus plants growing in fertilized areas were 

able to utilize the increased light from larger canopy openings to increase cover.  

 

Interactions between light and nutrients have been documented in other herbaceous-layer plants 

(Baeten et al. 2010; Eickmeier and Schussler 1993; Rodriguez-Garcia and Bravo 2013) and in 

coniferous forest systems (Hedwall et al. 2010; Hedwall et al. 2013; Strengbom and Nordin 

2012; Thomas et al. 1999), but less so in temperate deciduous forests (Gilliam 2007). Whereas 

light is thought to be the most limiting resource in the forest herbaceous layer (Coomes and 

Grubb 2000; Neufeld and Young 2014), the effect of light has been observed to be dependent on 
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the level of soil N (Walters and Reich 1997). However, light was the major factor affecting 

Rubus leaf N content in our field experiment (Figure 3-4). Rubus plants grown in the field 

experiment had higher leaf N concentrations in higher light regardless of their level of N 

fertilization. The lack of a differential effect between N and light on leaf N concentration is 

consistent with previous leaf research that has determined that light is the major factor 

controlling leaf N (Evans 1989). At the lowest level of light, fertilized plants appeared to have a 

lower leaf area (although not statistically significant) and the same concentration of chlorophyll 

(and foliar N) compared to unfertilized plants – suggesting that fertilized plants had a lower 

efficiency (chlorophyll-to-leaf area ratio) of light capture. At greater levels of light, this apparent 

difference in the efficiency of light capture was exaggerated since the leaf area of fertilized 

plants became greater than the leaf area of unfertilized plants while the concentration of 

chlorophyll did not differ from unfertilized plants. Although resource-use efficiencies can vary in 

response to resource availability, the exact mechanisms for the patterns I observed as light 

increased was not determined. 

 

The substantial increase in the relative cover of Rubus under N-fertilization suggests that Rubus 

species at FEF are indeed nitrophilic (Craine 2009; Dirnböck et al. 2014). Nitrophilic plants also 

often have thorns and a planophilic leaf angle distribution (Craine 2009), both notable traits of 

Rubus (Balandier et al. 2013). Under N fertilization, nitrophilic plants can cause shifts in 

herbaceous-layer species composition through increased competition for resources (Clark et al. 

2007; Cleland et al. 2008; Suding et al. 2005). Thus, plants that respond to N-fertilization by 

increasing cover can potentially out-compete neighboring plants for light (Newman 1973; 

Wilson and Tilman 1991). Specifically in Rubus, increases in cover at other sites have led to 
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decreases in tree seedling growth and survival by creating deep-shade (Balandier et al. 2013). 

Furthermore, the ability of Rubus to propagate vegetatively allows it to reproduce and spread 

quickly (Eilts et al. 2011) – which is likely the major factor causing the decline in diversity 

observed after 25 years of experimental N fertilization in WS3 at FEF (Gilliam et al. 2016). 

 

Whereas changes in interspecific competition help to explain the dominance of Rubus following 

N fertilization, other N-mediated processes could be shifting simultaneously in the forest 

herbaceous layer. Higher soil N can result in increased plant N uptake which, in turn, increases 

the quality of plant tissue for foraging herbivores (Throop and Lerdau 2004). Increased N 

availability can also lead to increases in pathogenic infections (Mitchell et al. 2003; Strengbom 

et al. 2002), increased susceptibility to species invasion (Cassidy et al. 2004), and composition 

shifts in soil microbial communities (Brandrud and Timmermann 1998; Compton et al. 2004). 

However, the Rubus plants grown in the field experiment experienced neither competition, 

species invasion, nor obvious signs of herbivory or pathogens, and leaf area was considerably 

higher at the high-N treatment when compared to the low-N treatment at the highest level of 

light. Therefore, a shift in herbaceous-layer composition toward nitrophilic species in N-

fertilized treatments at FEF is likely due primarily to a decline in the heterogeneity of soil 

nutrients under N fertilization (Beatty 2014; Eilts et al. 2011; Small and McCarthy 2003), and 

not due to other secondary N-mediated processes, consistent with the predictions of the N 

homogeneity hypothesis (Gilliam et al. 2016).  
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Overall, our results underscore the effect of both N and light on Rubus in the forest herbaceous 

layer. These effects were observed over a large span of temporal and spatial scales – from a 1-

year pot experiment, a 16-year early successional plot experiment, and a 23-year aggrading 

forest watershed experiment.  At each level, the response of Rubus under N-fertilization at FEF 

follows the pattern suggested by the soil nutrient homogeneity hypothesis, whereby a more 

homogeneous soil nutrient environment enhances the advantages of nitrophilic species and 

species richness can be reduced (Gilliam 2006). If our results are indicative of herbaceous layers 

in other temperate forest regions, then there is still potential for large losses of biodiversity under 

continued N deposition – at least, in part, driven by an increased dominance of nitrophilic 

species like Rubus.  
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3.6 Tables and Figures 
 
 
 

Table 3-1. The concentrations of chemical constituents used in the nutrient solution applied to 

Rubus plants grown in the field experiment, modified from Johnson et al. (1957). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Constituent Concentration (μM) 

KNO3 50 

Ca(NO3)2●4H20 25 

NH4NO3 50 

KH2PO4 6.25 

MgSO4●7H20 12.5 

KCl 20 

H3BO3 25 

MnSO4●H20 2 

ZnSO4●7H20 2 

CuSO4●5H20 0.5 

Na2MoO4 0.5 

CoCl2●6H20 0.5 

C10H12N2NaFe08 20 
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Figure 3-1. Experimental design, treatment groups, and sample sizes used in the two-

way field experiment. The values within light treatment indicate the percentage of 

ambient light purportedly blocked by the shade cloth, and the values within nitrogen 

treatment indicate the amount of nitrogen delivered at each of the 10 fertilizer 

applications. 



 

63 

 
 

 
 
 
Figure 3-2. The relative Rubus cover (the proportion of total herbaceous layer cover in a plot 

that is Rubus) in a fertilized (WS3) vs. unfertilized (WS7) watershed (A) and in fertilized 

(WT+NS) and unfertilized (WT) treatments in LTSP (B) vs. canopy openness as measured by a 

densiometer.  
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Figure 3-3. Mean leaf area per Rubus plant grown at two nitrogen levels and three light levels, 

achieved by using three densities of shade cloth designed to block a percentage of ambient light 

– high light used 30%, medium used 60%, and low used 90%. The means were back-transformed 

after analysis from log-transformed data and the error bars represent 95% confidence limits. 

Differing letters indicate significant differences (p < 0.05) between means using Student’s t-test.  
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Figure 3-4. Mean Rubus leaf SPAD and percent leaf nitrogen in plants grown across three light 

levels achieved by using three densities of shade cloth designed to block a percentage of ambient 

light – high light used 30%, medium used 60%, and low used 90%.. Differing letters indicate 

significant differences (p < 0.05) at each light level using Student’s t-test and error bars represent 

one standard error. 
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4.1 Abstract 
 

Nitrogen (N) additions have decreased species richness (S) in broadleaf deciduous forest 

herbaceous layers, yet the functional mechanisms for these declines have not been explicitly 

evaluated. I tested two hypothesized mechanisms in the forest herbaceous layer of a long-term, 

plot-scale fertilization experiment in the central Appalachian Mountains, USA – the random 

species loss (RSL) and non-random species loss (NRSL) hypotheses. Using a random thinning 

algorithm, I simulated changes in the density of each species under RSL and compared the 

simulated densities to the observed densities among N-fertilized (+N), N-fertilized and limed 

(+N+L), and reference (REF) plots in regenerating forest stands. I found a decline in richness 

among +N and +N+L treatments when compared to REF, over all of the years surveyed, and 

determined that many species had either an advantage or disadvantage under N additions because 

they occurred at densities different than those expected due to random thinning. Furthermore, I 

observed different responses for some species to the +N and +N+L treatments, providing 

evidence that species can respond to either the fertilization or acidification effects of added N. 

Species identified as being nitrophilic responded to N additions by achieving a greater density 

than what would be expected due to random thinning. However, despite changes due to random 

thinning in many species, the reduction in richness observed in N-fertilized treatments was a 

function of both RSL and NRSL. Thus, my results indicate that declines in S in the forest 

herbaceous layer under N fertilization are due to both random and non-random species loss, and 

that changes in composition can be influenced by the inherent advantages of a small number of 

nitrophilic species. 
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4.2 Introduction 
 

A negative relationship between nitrogen (N) inputs and plant species richness has been reported 

in many ecosystems (De Schrijver et al. 2011). This relationship has been widely observed in 

grasslands (Dupre et al. 2010; Stevens et al. 2004), heathlands (Phoenix et al. 2012; Southon et 

al. 2013) and, to a lesser extent, the forest herbaceous layer (Gilliam 2006; Hurteau and North 

2008). However, fewer studies have investigated the mechanisms responsible for N-mediated 

declines in the species richness of plant communities. Since excessive N additions can threaten 

the biodiversity of terrestrial ecosystems (Sala et al. 2000) and contribute to species extinction 

(Tilman et al. 2001), understanding how N lowers species richness is critical for developing 

strategies to preserve biodiversity (Suding et al. 2005). 

 

Globally, N availability constrains primary productivity (Vitousek and Howarth 1991), and N 

additions usually increase plant productivity by alleviating N limitation (LeBauer and Treseder 

2008). The relationship between productivity and species richness is often unimodal, where 

richness is highest at an intermediate level of productivity (i.e. the “hump-backed model”; Grime 

1973; but see Adler et al. 2011).  There are two primary mechanistic hypotheses which explain 

why species are lost under N fertilization at the highest levels of productivity. The non-random 

species loss hypothesis (NRSL) is an explanation of species loss where species that are superior 

in nutrient acquisition, growth rate, pathogen resistance, and other properties will displace 

species with inferior levels of those traits (Newman 1973; Tilman 1984; Wilson and Tilman 

1993). With increased soil fertility, the superior species indirectly suppresses the growth of the 

subordinate species and different mortality rates between the two emerge.  In contrast, the 

random species loss hypothesis (RSL) contends that mortality is equal among all species, and 
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that the change in species composition under increased fertility is an effect of enhanced density-

dependent mortality, where uncommon species are lost by chance (Goldberg and Miller 1990; 

Oksanen 1996; Stevens and Carson 1999). Neither NRSL nor RSL are necessarily mutually 

exclusive and the degree to which either mechanism alters community composition varies across 

systems (Suding et al. 2005), scales (Gross et al. 2000), and sites (Clark et al. 2007; Gough et al. 

2000).  

 

Beyond increasing productivity, N additions also have the potential to acidify soil which, in turn, 

can decrease the concentration of base cations in the soil and increase the solubility of toxic 

metals (Vitousek et al. 1997; Driscoll et al. 2001). Thus, nitrophilic species – species that are 

associated with environments that have high N availability – may be able to either: 1) utilize 

excess N to out-compete or gain other advantages over non-nitrophilic species (Hautier et al. 

2009); 2) withstand the secondary effects of soil acidification (Peppler-Lisbach and Kleyer 2009; 

Schuster and Diekmann 2003); or 3) do both simultaneously. However, distinguishing a species 

or community response between the fertilization and acidification effects of N additions is 

difficult because multiple, interacting soil factors may be changed with N additions that can 

confound expected plant responses (Schaffers and Sykora 2000), and alter the degree to which 

NRSL and RSL mechanisms affect species richness. 

 

Most research testing NRSL and RSL mechanisms on species richness has been done in 

grassland and old-field communities (Thomas et al. 1999) – systems dominated by herbaceous 

plants with relatively low species richness at broad scales. While these studies have helped spur 
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changes in plant community theory (Fraser et al. 2014), their results may not be generally 

applicable to forested systems. In contrast to grasslands and old-fields, the herbaceous layer of 

broadleaf deciduous forests are species rich communities of mostly perennial herbs, canes, 

graminoids, woody shrubs, and tree seedlings. Additionally, competition within this community 

for light, water, and nutrients occurs both within the herbaceous layer and between herbaceous 

layer plants and overstory trees (Gilliam and Roberts 2014; Neufeld and Young 2014). 

Community changes in the herbaceous layer of forests are of critical importance for managers 

interested in protecting biodiversity, because this forest stratum is responsible for more than 80% 

of plant species richness in broadleaf deciduous forests (Gilliam 2007). Yet, to our knowledge, 

no tests of NRSL vs. RSL hypotheses have explicitly been done in a broadleaf deciduous forest 

herbaceous layer. 

 

Accordingly, the objectives of this research were to: (1) determine the extent of N-mediated 

changes in plant density and species richness, diversity, and evenness; (2) explicitly test the 

extent to which the NRSL or RSL mechanisms could be responsible for the changes in those 

community metrics; (3) separate the effects of N fertilization from those of soil acidification; and 

(4) understand the effect of nitrophilic species on community composition under experimental N 

fertilization in a broadleaf deciduous forest herbaceous layer. To meet these objectives, I 

analyzed long-term data collected from a plot-scale fertilization experiment located in the central 

Appalachian Mountains, USA. 
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4.3 Methods 
 

Study area and sampling 

This research was carried out at the Fernow Experimental Forest (FEF) in West Virginia, USA, 

in the long-term soil productivity experiment (LTSP; 39.0563, -79.6979). The FEF is a 1902-ha 

research area that primarily contains a mixed mesophytic forest (Kochenderfer 2006). The LTSP 

is a four plot × four block randomized design (four plots per block) that includes three 

experimental treatments and one uncut area in each block (Figure 4-1). For the purpose of this 

research, the uncut area was not examined. The three experimental treatments were all harvested 

(removal of all aboveground biomass) in the winter of 1996 (Adams et al. 2004). Since 1996, 

four plots have been fertilized at a rate of 35 kg N ha-1 yr-1 with ammonium sulfate, applied by 

hand (+N). Another four plots have been fertilized with ammonium sulfate at the same rate and 

limed at a rate of 22.5 kg Ca ha-1 yr-1 with dolomitic lime (+N+L). And the remaining four plots 

have been allowed to regrow naturally with no experimental additions and are used as the 

reference in this experiment (REF). Each plot is 0.4 ha and contains a 0.2 ha area in which 

measurements are made (a 7.6 m treated buffer surrounding each plot). Herbaceous layer 

sampling was done by randomly selecting five 1-m circular subplots from a gridwork of 16 

reference points within each plot (Figure 4-1). The herbaceous layer was defined as all vascular 

plants that were one meter tall or less (Gilliam 2007), and individual plants were defined as one 

stem coming from the ground. Within each subplot, each plant was identified and counted. The 

subplots within each plot were summed to determine the density of each species per five m2. 

Sampling was done between the months of June and July in 1996 (prior to treatment), and during 

the same months in 1997, 2001, 2006, and 2011.  
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Community metrics 

Total plant density and species richness, diversity, and evenness were calculated in each plot for 

each sampling year. Total plant density (D) was calculated as the sum of all individuals per 5-m2, 

and species richness (S) was defined as the total number of species per 5-m2. Species diversity 

(H’) was calculated using the Shannon-Weaver index, and evenness was calculated using 

Pielou’s evenness metric (J; Hill 1973). To examine differences in D, S, H’, and J, a three-way 

analysis of variance (ANOVA; with model effects being block, treatment, year, and treatment × 

year) was used, testing each metric for the effect of both treatment and year, and the differential 

effect of the two factors. Since there was only one replicate of each treatment in each block, 

model effects testing interaction with block could not be included in the model. Tukey’s HSD 

test (THSD) was used to determine pairwise differences in means among years, among 

treatments, and among both factors simultaneously. Since the 1996 sampling period occurred 

prior to treatment, the three-way ANOVA and THSD tested only the post-treatment sampling 

years of 1997, 2001, 2006, and 2011. To test for pre-treatment differences in D, S, H’, and J 

among the treatments, a two-way ANOVA (with model effects being block and treatment) and 

THSD were used to analyze the 1996 sampling year. A block × treatment term could not be 

included in the model because there was only one treatment in each block. Assumptions of 

normality and homoscedasticity were tested in ANOVA residuals and no data transformations 

were necessary. The community metrics were all calculated using R package vegan (Oksanen et 

al. 2015), and ANOVAs were performed using SAS JMP (SAS Institute 2015). 
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NRSL vs. RSL 

To test the NRSL vs. RSL hypotheses, a simulated random thinning replicated what would occur 

if RSL was the only mechanism determining composition in the herbaceous layer.  More 

specifically, an algorithm was used to randomly thin all plants from each plot from their density 

in 1997, to their density in a later sampling year (2001, 2006, or 2011). The thinning simulation 

was then repeated to obtain a bootstrap distribution of the RSL density of each species (DS). 

Then, DS in each plot was compared to the observed species density within the plot (DO). The 

difference between DO and DS is a distribution of differences and was denoted as δ. If the mean δ 

was positive, then there was evidence that the species has an advantage. Likewise, a negative δ 

indicated a disadvantage for the species. Differences in mean δ should be expected in the 

herbaceous layer of an early successional forest, as many factors could influence NRSL among 

species. To gain a more detailed understanding how N affects NRSL, differences between the 

mean δ among treatments were compared for each species. The simulation approach I used was 

modified from Stevens and Carson (1999), and consisted of the following steps: 

1) Four of the plots from each treatment were selected randomly, with replacement. 

2) Within each plot, individual plants were randomly selected from the total community of 

plants within the plot in 1997, without replacement. The number of randomly selected 

plants was determined by the DO of that same plot in 2001. The plants that were 

randomly selected represented the remaining community after random thinning (RSL). 

3) The mean density of each remaining species was calculated for each plot. 

4) The simulation was repeated 15,000 times to create a distribution for each treatment of 

the mean density values for each species (DS). 
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5) Since differences between DO and DS are expected during succession, the differences 

among the treatments between DO and DS were calculated:  

            𝛿𝑡1 = [𝐷𝑂𝑡1
− 𝐷𝑆𝑡1𝑖

]    resulting in 15,000 values of 𝛿𝑡1 

            𝛿𝑡2 = [𝐷𝑂𝑡2
− 𝐷𝑆𝑡2𝑖

]    resulting in 15,000 values of 𝛿𝑡2 

 And then the mean differences were compared using a probability test: 

        If,    
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where t1 and t2 are two treatments for comparison and 𝑖 denotes iteration number. The p-

value is the probability that the mean δ is different (larger or smaller) between two 

treatments – a p-value of one indicates no difference between means. 

6) The entire process was repeated for 2006 and 2011, using the initial density in 1997 for 

each year.  

7) To control for the potential of type II errors in multiple comparisons, I used a sequential 

Bonferroni test on the p-values from step five across all species, treatments, and years 

(Holm 1979, Rice 1988). 

The algorithm is predicated on the observation that N additions decrease the density of 

individuals at the community level. As such, this procedure estimates the maximum loss of 

species from RSL, and the minimum loss of species from NRSL. Since some population 

dynamics cannot be included in this approach, the loss of individuals represents the net loss 

between two sample periods, since new stems could have been added to the populations. The 
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thinning simulation was performed using R (R-Core-Team 2015) and R package vegan (Oksanen 

et al. 2015). 

 

To determine the effect of NRSL on S, I modified the species equilibrium theory equation 

(MacArthur and Wilson, 1967) to partition species losses within a treatment into losses from 

RSL, and losses from NRSL: 

𝛥𝑆𝑡0−𝑡𝑥
=  𝐺𝑡0−𝑡𝑥

− (𝐿𝑅𝑆𝐿𝑡0−𝑡𝑥
+  𝐿𝑁𝑅𝑆𝐿𝑡0−𝑡𝑥

)  

where 𝛥𝑆𝑡0−𝑡𝑥
  is the change in S from 1997 to time x (2001, 2006, or 2011), 𝐺𝑡0−𝑡𝑥

 is the input 

of new species from 1997 to time x, 𝐿𝑅𝑆𝐿𝑡0−𝑡𝑥
 is the difference between observed S in 1997 and 

the expected S under RSL at time x (loss of species due to RSL), and 𝐿𝑁𝑅𝑆𝐿𝑡0−𝑡𝑥
 is the number of 

species lost due to NRSL from 1997 to time x. The mean S calculated by the random thinning 

simulation is used as the estimate of 𝐿𝑅𝑆𝐿𝑡0−𝑡𝑥
. Using this estimate, the equation can be modified 

to solve for the number of species lost due to NRSL: 

𝐿𝑁𝑅𝑆𝐿𝑡0−𝑡𝑥
= 𝐺𝑡0−𝑡𝑥

− E(𝐿𝑅𝑆𝐿𝑡0−𝑡𝑥
) + 𝛥𝑆𝑡0−𝑡𝑥

 

where E(𝐿𝑅𝑆𝐿𝑡0−𝑡𝑥
) is the expected loss of species due to RSL, estimated from the random 

thinning simulation. This equations makes two assumptions: (1) that the error in detecting a 

species is equal to the error in not detecting a species in a plot, and (2) that populations are 

undergoing RSL simultaneously to NRSL. Since E(𝐿𝑅𝑆𝐿𝑡0−𝑡𝑥
) is calculated from a bootstrap 

sampling procedure that used the plots as the unit of analysis, no statistical comparisons could be 

made to test differences in the % contribution of NRSL and RSL among treatments. However, to 

test for differences between RSL and NRSL in each treatment, means of observed species 

richness (St1) and means of species richness that did not include species additions since 1997 
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(Scohort) were compared to the expected species richness under RSL (SRSL). The difference 

between Scohort and SRSL is the difference in S due to NRSL. To compare means, 99.7% 

confidence intervals of SRSL were calculated to correct the for family-wise error rate at α = 0.05. 

Means of St1 and Scohort that fell outside of the confidence intervals were considered to be 

significantly different. 

 

Nitrophilic species 

In order to examine the presence and performance of nitrophilic species, information on the 

association between plants and N availability must be used. Since a database of nitrophily does 

not exist for the United States, I used published information to assign a nitrophily status to each 

species I found in the LTSP plots (Table A-1). Where possible, I used species-specific 

experimental or observational results from the eastern North American broadleaf deciduous 

forest region. If regional results were not available, species-specific results from other regions 

were used. In many cases, I used a nitrophilic classification scheme for European plants – the 

Ellenberg index (Hill et al. 1999). The Ellenberg index assigns species to a number from one to 

nine based on their association with soil N availability (nine being the highest level of 

nitrophily). Some of the species in the LTSP plots were listed in the Ellenberg index and, in 

those cases, I used the published Ellenberg value. Some species were not in the Ellenberg index, 

but their congeners were. In those cases, the median Ellenberg nitrophily score of all congeneric 

species was assigned to an LTSP species. Since I frequently relied on the Ellenberg index, 

species whose nitrophily status was determined from studies other than Hill et al. (1999) were 

also assigned an Ellenberg nitrophily score based on their long-term response to differing levels 

of N. 
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To test the effect of N addition on nitrophilic species, the nitrophily index values were treated as 

a binary nominal variable. Species with index values greater than five were categorized as 

nitrophilic, and species with index values equal to, or less than five were categorized as non-

nitrophilic. This step of assigning nitrophily into two categories was undertaken to help 

overcome the lack of species-specific nitrophily information (i.e. using congeners in nitrophily 

status assignment) and the subjective classification of non-Ellenberg listed species that were 

found in the published studies. A three-way analysis of covariance (ANCOVA) was used to 

compare differences in mean δ between nitrophilic and non-nitrophilic species, among the 

treatments, and among the years 2001, 2006, and 2011. Since a full three-way ANCOVA model 

included seven effects, and because of the potential of false (i.e. non-significant) heterogeneity in 

slopes may diminish detection of treatment effects (Engqvist, 2005), corrected Akaike’s 

Information Criterion (AICc) statistics were used to determine the best final model in the 

absence of any significant effects or interactions. A THSD of the final model was also used to 

test for differences between nitrophilic and non-nitrophilic species among treatments and years. I 

was unable to determine the nitrophily status for three species: Zanthoxylum americanum; 

Podophyllum peltatum; and Streptopus lanceolatus, and these species were excluded from the 

ANCOVA and THSD tests. A transformation to normalize residuals was not successful, 

therefore I performed the ANCOVA without transformation and rely on the robustness of 

ANOVA procedures to deviations from normality – particularly because the data were balanced 

(Quinn and Keough 2002).  
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Plant life-forms 

In addition to examining the response of different functional groups, I also examined if different 

plant life-forms (graminoids, non-woody herbs, shrubs, trees and vines) were favored or placed 

at a disadvantage by the experimental treatments.  This was accomplished by comparing the δ 

values from the random thinning simulation (difference between simulated and observed density 

for each species) among five plant life-form groups in a two-way ANOVA. Three separate 

ANOVAs were used to determine if the effect of treatment (REF, +N, or +N+L) on mean δ 

depended on the plant life-form in any one of the three simulation years (2001, 2006, and 2011). 

THSD tests were used to determine pairwise differences in mean δ. 
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4.4 Results 
 

Community metrics 

Prior to the beginning of treatment, there were no differences in density (D), richness (S), 

diversity (H’), or evenness (J). For the years following the beginning of experimental treatments, 

the effect of the various treatments on D did not depend on year. However, the experimental 

treatments did have an effect on D (F = 6.74, p = 0.0035), as did year (F = 39.92, p < 0.0001). 

Across all years, D was 37.8% lower in the +N treatment than in the REF treatment (t = -3.64, p 

= 0.0026). Across all treatments, D decreased 39.4% between 1997 and 2001 (t = 8.03, p < 

0.0001), 74.4% between 1997 and 2006 (t = 9.93, p < 0.0001), and 55.4% between 1997 and 

2011 (t = 8.38, p <0.0001; Figure 4-2a). There were also multiple pairwise differences in D 

among both years and treatments (Table A-2).  

 

There was no differential rate of change of S among treatments. However, treatment alone had an 

effect on S (F = 9.04, p = 0.0007), as did year (F=3.12, p = 0.0389). Across all years, S was 

23.5% lower in +N (t = -4.03, p = 0.0009) and lower by 18.0% in +N+L when compared to REF 

(t = -3.18, p = 0.0088; Figure 4-2b). When averaged across all treatments, S declined between 

1997 and 2011 (t = 2.91, p = 0.0310). Among both treatments and years, when compared to REF 

in 1997, S in the +N treatment was 38.7% lower in 2001 (t = -3.53, 0.0478), 42.7% lower in 

2011 (t = -3.83, p = 0.0228), and 38.7% lower in the +N+L treatment in 2001 (t = -3.53, p = 

0.0478; Table A-2). Additionally, there was evidence of a trend toward lower S when REF in 

1997 was compared to the +N treatment in 2006 (t = -3.43, p = 0.0606), and +N+L in 2011 (t = -

3.33, p = 0.0762).  
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There was no differential effect of treatment and year on H’. Treatment also did not have an 

effect on H’, however, year did (F = 5.17, p = 0.0049). Across all treatments, there were 

decreases in H’ for the years 1997-2011 (16.0% decline; t = 3.52, p = 0.0066), 2001-2011 

(13.2% decline; t = 2.87, p = 0.0342), and 2006-2011 (14.3% decline; t = 3.12, p = 0.0187; 

Figure 4-2c). Pairwise comparisons among both years and treatments determined a 31.8% 

decline in H’ in REF between 1997 and 2011 (t = 3.99, 0.0153), and a trend toward a 27.0% 

decline in REF between 2001 and 2011 (t = 3.30, p = 0.0821; Table A-2). 

 

With respect to J, the effect of treatment did not depend on the year. Treatment did have an 

effect on J (F = 5.4661, p = 0.0089), as did year (F = 4.93, p = 0.0061). Across all years, the only 

difference in J among treatments was between REF and +N. Specifically, J in REF was 0.658, 

and J in +N was 0.719, a difference of 8.9% (F = 3.29, p = 0.0065; Figure 4-2d). Across 

treatments, there was an 8.9% decrease in J from 1997 to 2011 (t = 2.74, p = 0.0457), a 10.6% 

decrease from 2001 to 2011 (t = 3.31, p = 0.0117), and a 10.4% decrease from 2006 to 2011 (t = 

3.25, p = 0.0136). There were multiple pairwise differences in J among both years and 

treatments (see Table A-2), and a trend toward a difference between REF in 2011 and +N in 

2011 (t = 3.35, p = 0.073). 

 

NRSL vs. RSL 

For the species examined, 54.1% of the net density changes found were the result of NRSL, 

rather than a consequence of RSL. Furthermore, for the seven species with the highest δ values 

(δ >10 for one or more years), the treatment differences in δ tended to be enhanced through time, 

with the exception of Smilax rotundifolia where δ values were consistently greater for the +N 
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plots compared to those for the REF plots (Figure 4-3).  Overall, there were differences in δ 

among treatments for 45 of the 83 species in one or more sampling years (Tables A-3 through A-

5).  The most frequently detected treatment effect for species with high δ values was between the 

REF and +N plots.  For four species (Rubus spp, Polygonum spp., Rosa carolina, & Smilax 

rotundifolia), the plants in the +N plots had a greater advantage (typically in the later years) 

compared to those growing in the REF plots (i.e. they had a significantly higher δ).  For one 

species (Acer rubrum) the reverse was true, with the plants in the +N plots thinning randomly 

whereas those in the growing in the REF plots had an advantage by achieving much higher 

densities than expected by random thinning (Figure 4-3). 

 

With respect to the contributions of NRSL and RSL on species losses, I found that NRSL was an 

important mechanism affecting S. The contributions to species loss from NRSL ranged from 

28.6-72.5% across all treatments and years (Table 1), and the average was 50.8%. Across all 

years, the average contribution to species losses from NRSL was 60.1% in REF, 43.8% in +N+L, 

and 48.6 in +N. In 2001 and 2011, the percent contribution to species loss from NRSL was 

highest in REF and lowest in +N+L. However, in 2006 this pattern changed and NRSL was most 

dominant in +N+L and least dominant in +N (Table 1). When the expected richness under RSL 

(SRSL) was compared to observed richness without species additions (Scohort), NRSL was the 

dominant mechanism responsible for reduced S in all years, in REF. When compared among 

Scohort in the +N+L treatment, S was reduced by NRSL in 2006 and 2011, but by RSL in 2001. In 

the +N treatment, NRSL was the dominant force acting on S only in 2011, and RSL was 

responsible for a greater level of reductions in S in both 2001 and 2006. 
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Nitrophilic species 

In REF plots, both nitrophilic and non-nitrophilic species were thinning randomly in 2001. 

However, a large difference emerged by 2011, when nitrophilic species were much less 

advantaged than non-nitrophilic species (Figure 4-4a).  The addition of N, with or without lime, 

suppressed any temporal transitions in the average advantage of nitrophilic and non-nitrophilic 

species, and both were found to be thinning randomly throughout the study period (Figure 4-4b 

& 4-4c). 

 

The effect of nitrophily status on the mean δ depended on the year (F = 3.00, p = 0.0502). When 

averaged across treatment, there were no significant differences in mean δ among years or 

nitrophily status. However, the largest non-significant difference in mean δ occurred between 

non-nitrophilic species in 2011 (1.23 individuals/5 m2) and nitrophilic species in 2011 (-1.80 

individuals/5 m2; t = 2.31, p = 0.1902; Figure 4-4d).  When averaged across both years and 

treatments, there was also a trend in the effect that nitrophily status had on mean δ (F = 2.76, p = 

0.0971), with nitrophilic species exhibiting less of an advantage (mean δ = -0.73 individuals/5 

m2) than non-nitrophilic species (mean δ = 0.51 individuals/5 m2; t = 1.66, p = 0.0971). There 

was no main effect of year or treatment on mean δ. The model was best fit by using the effects of 

year, nitrophily status, treatments, and year × nitrophily status. 

 

Plant life-forms 

With regard to the different life-forms that were either advantaged or disadvantaged, the effect of 

treatment on δ (difference between simulated and observed density) did not depend on life form. 

Moreover, there was no effect of treatment on mean δ, when averaged across plant life-forms. 
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However, there was an effect of plant-life form on mean δ in 2001 (F = 6.89, p < 0.001) and 

2006 (F = 2.6867, p = 0.0319; Figure 4-7). Shrubs had a density advantage over herbs (t = 5.10, 

p < 0.0001), trees (t = 4.70, p < 0.0001), and vines (t = 3.69, p = 0.0025) in 2001, and herbs had 

a trend toward a density advantage over vines in 2006 (t = 2.63, p = 0.0680).  
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4.5 Discussion 
 

My results show that N additions to the herbaceous layer in a broadleaf deciduous forest reduced 

both D and S, and both NRSL and RSL mechanisms appeared to make significant contributions 

to those reductions. Tests of the bootstrap simulation found that 54.1% the species present in the 

sampling years from 2001-2011 were either more or less dense than predicted under random 

thinning in at least one sampling year. Application of the species richness equation indicates that 

48.6% of species loss in the +N treatments, and 43.8% of the species lost in the +N+L treatments 

were due to NRSL. Therefore, both mechanisms (NRSL and RSL) contributed to the decrease in 

density that was observed between REF and +N treatments, and the decrease in richness between 

REF and both +N and +N+L treatments (Figure 4-2).NRSL was the dominant factor affecting 

species losses in the REF treatment, and the effect of NRSL generally increased through time in 

the +N and +N+L treatment (Figure 4-5). Across all lines of evidence in this study, there was a 

general increase in the relative importance of NRSL over time in fertilized treatments (+N+L and 

+N), and a steady contribution from NRSL over the years in REF treatments. 

 

Studies of the effects of N in grassland and old-field systems have discovered evidence for 

species loss due to both NRSL (Hautier et al. 2009) and RSL (Stevens and Carson 1999), and 

evidence for both occurring simultaneously (Suding et al. 2005). Research testing the two 

mechanisms in the understory a fertilized needle-leaf evergreen forest determined that RSL was 

the mechanism responsible for declines in S (Thomas et al. 1999). Discrepancies in results 

among these studies, and ours, are likely due to a variety of varying environmental factors that 

may favor certain species, and the collection of plant functional types that are present in the 

herbaceous community at each site (Suding et al. 2005). The sites examined in previous studies 
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vary widely with respect to ecosystem type, N-fertilization amounts, land-use history, and 

cumulative N load – all factors could affect NRSL and RSL mechanisms. Additionally, 

differential advantages among species under N additions can also indirectly occur because of 

shifts in soil microbial communities (Johnson et al. 2003), increases in plant litter accretion 

(Foster and Gross 1998, Lamb 2008) and changes in herbivory, pathogenic infections and 

earthworm activity (Gilliam 2006).  

 

One, or many, of the previously documented N-induced, indirect environmental changes could 

explain the advantages and disadvantages I observed among species in the forest herbaceous 

layer at the Fernow Experimental Forest (Rajaniemi 2003). However, the dominant resource 

influencing the response of a species under N additions is likely to be light (Hautier et al. 2009, 

DeMalach et al. 2016), as competition among species shifts from belowground nutrient 

acquisition to aboveground light acquisition (Newman 1973, Tilman 1987). Therefore, the 

response of nitrophilic species, like Rubus spp. (Figure 4-3), under N additions is probably the 

result of increased competition for light, and not the result of other indirect effects. Results from 

my field experiment on Rubus support this idea (Chapter 3). In that study, I found that, at high 

light levels, N fertilization caused a substantial increase in the leaf area of Rubus allegheniensis 

in the absence of changes in herbivory, earthworm activity, or obvious pathogenic infections.   

 

Previous studies of forest herbaceous layers typically find N-induced reductions in H’ 

(Strengbom and Nordin 2008, Hedwall et al. 2011, Gilliam et al. in press).  In contrast, I found 

that species diversity and evenness did not decrease after 15 years of N fertilization. Instead, 

both H’ and J were lower in 2011 in REF treatments when compared to both +N and +N+L 
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treatments, suggesting that in this experiment N fertilization maintained higher H’ early in 

succession (Figure 4-1). Since H’ is a function of both S and J, the decrease in H’ observed in 

REF after 15 years was driven mainly by a decrease in J, since S was not significantly different 

among the treatments in 2011. However, Gilliam et al. (in press) did not observe a decrease in H’ 

in the forest herbaceous layer of a nearby location until ca. 25 years of fertilization at 35 kg N ha-

1 yr-1, suggesting that a similar decrease in H’ in response to N fertilization in the LTSP may not 

be realized until later in succession. 

 

Gilliam (2006) used the nitrogen homogeneity hypothesis to argue that the dominance of 

nitrophilic species should cause both J and S to decrease after chronic N additions, leading to a 

decrease in H’. However, our results show that both J and H’ were higher in the N-fertilized 

treatments after 15 years of application, with no significant differences in S among treatments 

(no differences among treatments in S in 2011). One explanation for why, after 15 years, there 

were lower values of H’ in REF plots, rather than in the fertilized plots,  may be the increase in 

heterogeneity of – and greater competition for – light due to significant damage to the forest 

canopy in the LTSP plots that occurred in December 2009 during a localized wind storm 

(Chapter 5). Since competition for light is a major factor influencing diversity under N-additions 

(Hautier et al. 2009), it seems plausible that a greater, storm-induced heterogeneity in light at the 

forest floor stimulated enhanced competition for light across all LTSP treatments. 

Simultaneously, the species composition in +N and +N+L treatments may have already been 

dominated by nitrophilic species (e.g. Rubus spp.; Figure 4-6) that were all competing for light, 

leading to a higher eveness, whereas fewer nitrophilic species in REF plots could have led to 

lower levels of species eveness. There is also evidence that tree damage was greater in N-
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fertilized plots (Chapter 5), which may have led to differences among treatments in post-storm 

effects on the herbaceous layer.  

 

Unlike most studies of N effects on plant communities, my results allow me to separate the 

acidification and fertilization effects of N additions on plant species. If the effect on δ of N 

additions was only attributable to the fertilization effect, I would expect the same response in 

mean δ in each species, between +N and +N+L treatments. Although a variety of response 

patterns were observed when these two treatments were compared (Tables A-3 through A-5), the 

addition of lime usually diminished the magnitude of the advantage, or disadvantage, shown by a 

given species due to N fertilization (Table 4-1; Figure 4-3). Additionally, responses to lime 

additions were not observed among plant life-forms (Figure 4-7). Although no clear pattern 

emerged by comparing the response of different plant life-forms, the addition of lime appeared to 

hasten the role of NRSL. Specifically, I found that the species richness in +N+L plots was 

affected by NRSL in 2006, but was not affected by NRSL in +N plots until 2011. 

 

The use of an index of nitrophily status as a functional trait appears to be meaningful since 

species classified as nitrophilic responded to N additions in ways that were likely to contribute to 

species losses through NRSL. In general, non-nitrophilic species had a greater advantage (a 

higher mean δ) in REF plots than nitrophilic species (Figure 4-4a), and their advantage relative 

to non-nitrophilic species increased through time.  However, this pattern was diminished in both 

the +N and +N+L treatments where the changes in density of the two functional groups were 

consistent with the effect of random thinning alone (Figures 4-4b and 4-4c). These results 

contrasted with the analysis of treatments among plant life-forms (Figure 4-7). Using traits that 
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characterized life form were not as powerful as nitrophily status at predicting advantageous or 

disadvantageous outcomes under fertilization. 

 

 After 15 years of experimental treatments, Rubus spp. and Polygonum spp. were the two 

nitrophilic species that showed the greatest positive response to N additions (Figures 4-3b and 4-

3c), consistent with the observations that Rubus spp. has increased dramatically in a nearby, 

fertilized watershed at FEF (WS3) since 1989 (Gilliam et al. in press), and has increased in 

response to N additions in boreal forests (Strengbom and Nordin 2008, Hedwall et al. 2011). By 

2011, the percentage of the herbaceous layer density consisting of Rubus spp. averaged 14.1% in 

the fertilized treatments (+N+L and +N), and only 2.6% in REF (Figure 4-6).  Further evidence 

from FEF (including the LTSP plots) indicates that Rubus spp. utilize excess N to increase cover 

in areas of high light (Chapter 3). Similarly, research in a European deciduous forest found that 

Polyganum spp. is an indicator of high N-availability (Bernhardt-Romermann et al. 2010). In 

contrast to nitrophilic species, the two species that appeared to suffer the most from the effects of 

N additions were Viola spp. and Acer rubrum. Since both species were primarily affected by N 

additions without lime (+N), this suggests that the effect of acidification had a greater influence 

than the effect of added N (Figures 4-3a and 4-3d). Furthermore, both species have declined after 

25 years of N fertilization in a watershed-scale experiment (WS 3) at the FEF (Gilliam et al. in 

press). 

 

Overall, this research demonstrates a substantial role for the mechanisms of non-random species 

loss under N additions, particularly as time – and the cumulative load of N – increased. More 

specifically, the N-induced reduction of S in fertilized treatments was hastened by an increase in 
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NRSL through time. As previously suggested by Gilliam (2006), changes in the herbaceous layer 

in our study sites due to N additions appear to be influenced by the advantage gained by a few 

nitrophilic species. Changes in herbaceous layer composition also occurred by non-nitrophilic 

species being put at a disadvantage by the N additions, chiefly in response to the acidification 

effects of the added N. Thus, in forests receiving high levels of atmospheric N deposition, the 

overall loss of plant biodiversity (concentrated in the herbaceous layer) may be mitigated to 

some extent by the addition of lime. Our research also demonstrates that understanding the 

response of the herbaceous layer in a broadleaf deciduous forest to N additions requires long-

term experiments that monitor these complex communities through time. 

 



 

98 

4.6 Tables and Figures 

 

 

 

 

 

 

 

 

Metric REF +N+L +N REF +N+L +N REF +N+L +N

S 1997 27.0 21.0 21.0 27.0 21.0 21.0 27.0 21.0 21.0

S t1 23.8 18.3 18.3 24.3 21.5 18.5 20.3 18.8 17.5

ΔS 1997-t1 3.3 2.8 2.8 2.8 -0.5 2.5 6.8 2.3 3.5

Number of spp. 

additions 6.3 5.5 5.5 7.8 9.0 7.5 5.5 7.0 6.8

Expected spp. 

loss due to RSL 2.6 5.4 3.9 6.3 4.3 7.1 3.9 4.8 3.7

Expected S 

due to RSL 24.4 15.6 17.1 20.7 16.7 13.9 23.1 16.2 17.3

Spp. loss due 

to NRSL 6.9 2.8 4.4 4.2 4.2 2.9 8.3 4.4 6.6

% spp. loss due 

to NRSL 72.5 34.2 53.0 39.7 49.5 28.6 68.0 47.7 64.2

2001 2006 2011

Notes: S  denotes species richness and t1 = year indicated in column

Table 4-1. Variables used in the calculation of species loss due to non-random species 

loss (NRSL) and random species loss RSL, and the estimated percent contribution of 

NRSL to species losses in reference (REF), fertilized and limed (+N+L), and fertilized 

plots (+N). 
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Figure 4-1. Location and layout of the LTSP plots detailing the grid within each plot, 

from which five subplots were randomly chosen. 
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Figure 4-2. Species metrics in the reference (REF), N-fertilized (+N), and N-fertilized 

and limed treatments (+N+L). Error bars represent one standard error. 
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Figure 4-3. Mean difference in simulated vs. observed density (δ) for the seven species with δ values greater than 

ten in at least one sampling year among reference (REF), N-fertilized (+N), and N-fertilized and limed treatments 

(+N+L). Error bars represent one standard error and significant sequential Bonferroni p values testing pairwise 

comparisons are indicated as (A) REF vs. +N+L, (B), REF vs. +N, and (C) +N vs. +N+L. 
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Figure 4-4. Mean difference in simulated vs. observed density (δ) between nitrophilic 

(closed triangles) and non-nitrophilic (open squares) species among reference (REF), 

N-fertilized (+N), N-fertilized and limed treatments (+N+L), and averaged across all 

treatments. Error bars represent one standard error. 
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Figure 4-5. Mean species richness among N-fertilized (+N), and N-fertilized and 

limed treatments (+N+L) expected under RSL (SRSL), observed during that 

sampling year (St1), and observed minus species additions since 1997 (Scohort). 

Error bars represent a 99.7% confidence interval to correct for family-wise error 

rate at α = 0.05 and asterisks denote significant differences between means. 
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Figure 4-6. Mean relative density of Rubus spp. among reference (REF), 

N-fertilized (+N), N-fertilized and limed treatments (+N+L). Error bars 

represent one standard error. 
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Figure 4-7. Mean δ of plant life-form groups – graminoid (G), herb (H), 

shrub (S), tree (T), and vine (V) – in unfertilized (REF), fertilized (+N), and 

fertilized and limed (+N+L) treatments. 
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Chapter 5. Does soil nitrogen availability affect storm damage in stands of broadleaf 

deciduous forest in the central Appalachian Mountains? 
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5.1 Abstract 
 

Storms are the greatest natural disturbance in the forests of eastern North America. Damage from 

storms can, among other things, devalue timber, change species composition and recruitment, 

and alter canopy structure. Increased nitrogen (N) availability could make trees more susceptible 

to storm damage (especially wind damage) by changing root architecture, wood fiber 

arrangement, altering leaf morphology, and by decreasing canopy density. Greater storm damage 

to trees growing in N-rich environments can also indirectly impact the herbaceous layer by 

creating larger canopy openings that increase the amount of light reaching the forest floor. To 

understand how N availability affects susceptibility to storm damage in temperate broadleaf 

deciduous forests, I took advantage of a unique opportunity to survey the damage caused by two 

severe storms that occurred in pre-existing fertilized and unfertilized areas at the Fernow 

Experimental Forest, and across a native N-availability gradient. I found that both the percentage 

of basal area (BA) and the percentage of stems damaged by a localized winter wind storm were 

higher in N-fertilized plots than in unfertilized plots in early successional stands. In contrast, 

both the percentage of BA and the percentage of stems damaged by a late-fall severe snow storm 

– a consequence of Superstorm Sandy – were lower in a fertilized watershed, when compared to 

an unfertilized watershed.  However, the lower damage from the snow storm in the fertilized 

watershed was likely the result of a greater abundance of less susceptible species in the fertilized 

watershed.  No overall difference in damage was detected across a native N-availability gradient 

following the severe snow storm, but the differences in the percentage of BA and stems damaged 

among the species may have depended on the level of N availability. Our results suggest that the 

influence of long-term changes in N availability on storm damage in a temperate forest depends 

on the nature of the storm and the tree species, with the effects of severe winds being different 
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than the effects of heavy snowfall. Understanding the complexities of the relationship between 

storm damage and N availability is of particular importance in the forests of eastern North 

America because this region has a history of chronic N deposition, and the probability of large 

magnitude, Atlantic origin storms – particularly storms that cause high wind speeds – is likely to 

increase as the climate changes. 
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5.2 Introduction 
 

Storm damage is the most significant natural disturbance in the forests of eastern North America 

(Fischer et al. 2013), and can disrupt forest ecosystems in a variety of ways and at a diversity of 

spatial scales. The effect of storm damage on individual trees is often positively associated with 

tree diameter at breast height (DBH; Zimmerman 1994, Platt et al. 2000, Van Bloem et al. 2006) 

suggesting that larger trees are the most susceptible. However, smaller understory trees may also 

be damaged (bent or broken) when overstory trees fall. The damage to overstory and understory 

vegetation can alter the forest environment in several ways that may, in turn, alter species 

composition and diversity.  For example, at the stand level, tree damage can increase maximum 

canopy gap sizes by more than 30% (Xi et al. 2008) and increase canopy gap light levels by 

more than 45% (Sherman et al. 2001), which can have dramatic effects on the herbaceous layer 

vegetation.  And at the forest scale, storm-created canopy disturbance has caused lasting changes 

in tree recruitment (Baldwin et al. 2001; Batista and Platt 2003; Pascarella 1997), diversity 

(Uriarte et al. 2004), and species composition (Merrens and Peart 1992).  

 

How storms interact with nutrient additions to alter forest disturbance is less understood, but is a 

topic of increasing importance since inputs of N to the terrestrial biosphere have grown 

(Galloway et al. 2004), and since the frequency of intense storms is expected to increase in a 

warmer world. Increased soil nutrients can lead to several changes that should leave forests more 

susceptible to damage by intense storms (Deangelis et al. 1989). Trees growing in areas with 

high nutrient availability typically allocate less carbon to wood structural fibers (Bloom et al. 

1985; Chapin 1980; Pitre et al. 2007), yet are often taller, and have greater stem and leaf biomass 

(Grier et al. 1984; Miller 1981). Increased nutrient availability can also reduce the specific length 



 

117 

(root length : root dry mass) and total mass of roots, and alter three-dimensional root architecture 

(Ostonen et al. 2007, Valverde-Barrantes 2007, Jourdan et al. 2008, Kobe 2010, Domenicano et 

al., 2011; but see Nadelhoffer 2000). And tree stands in areas of very high N availability may 

experience branch and leaf mortality (Magill et al. 2004) that could decrease the canopy density 

and lower the extent that a forest canopy dampens wind speeds. Thus, it appears that increased N 

availability could produce trees that may be more susceptible to wind damage because they are 

taller, have fewer roots, and a greater mass of leaves.  A greater mass of leaves may also increase 

damage by a heavy snowfall if the storm were to occur before leaf senescence was complete. At 

the stand and forest level, increased soil nutrients can change tree seedling composition in ways 

that alter adult tree composition in a forest (Lu et al. 2010; Siddique et al. 2010). Thus, if tree 

species differ in their susceptibility to storm damage, then soil fertility could indirectly influence 

storm damage by altering tree species composition. In either case, through changes in tree 

composition or increases in damage, the effects of N on trees could also have an indirect effect 

on the composition of the herbaceous layer. 

 

Evidence of the effect of increased nutrient availability on the susceptibility of forest stands to 

storm disturbance is sparse and largely limited to tropical regions because large storms are more 

likely to strike equatorial latitudes. In studies across nutrient gradients in tropical forests, areas 

with higher soil nutrients were damaged more by hurricanes and cyclones than nutrient-scarce 

areas (Beard et al. 2005; Gleason et al. 2008). In a fertilization study, Herbert et al. (1999) 

measured hurricane damage in a phosphorus-limited tropical forest that included short-term 

nitrogen and phosphorus amended plots. They discovered that a hurricane caused more stem 

damage and leaf area loss in the fertilized plots when compared to the unfertilized plots. The 
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increase in susceptibility was attributed to an enhanced leaf area in the fertilized trees that 

increased the wind-drag (Herbert et al. 1999). However, tropical forests on old soils are often 

thought to be more limited by phosphorus than N (Vitousek 1984; Elser et al. 2007), so structural 

changes in tropical trees due to increased N availability may not be as severe as those in 

temperate forests. Additionally, studies in tropical forests investigate only one major aspect of 

storms – heavy winds – and, as a consequence of their location, cannot examine the effects of 

heavy snowfall.  

 

Understanding the impact of soil nutrition on forest susceptibility to storms in eastern North 

America is important because forests in this region have experienced chronic N deposition that 

began in the late 1800’s (Galloway et al. 2004), and because the intensity of Atlantic-origin 

storms is increasing with climate change (Bender et al. 2010; Emanuel 2005; Grinsted et al. 

2012; Grinsted et al. 2013).  The occurrence of two severe storms (one windstorm and one heavy 

snowfall) on existing long-term fertilization experiments, and across a native N-availability 

gradient, at the Fernow Experimental Forest created a unique opportunity for us to assess 

whether temperate forests with greater N availability were more susceptible to damage by severe 

storms, and for us to understand if this effect depended on whether the primary destructive force 

of the storm was from wind or snow. 
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5.3 Methods 
 

Study site 

The Fernow Experimental Forest (FEF) is a 1902-ha research forest located in the Allegheny 

Mountain physiographic province of north-central West Virginia (Kochenderfer 2006). Five 

watersheds, a stand of mature trees (the Biological Control Area), and a long-term, replicated 

experiment within FEF were used to carry out this study (Table 1; Figure 1-1). Watershed 4 

(WS4; 39 ha), Watershed 10 (WS10; 15 ha), Watershed 13 (WS13; 14 ha) and the Biological 

Control Area (BCA; 31 ha) were last cut ca. 1900, and serve as reference areas for an assortment 

of experiments at the FEF. Watershed 3 (WS3; 34 ha) was last cut between 1969 and 1972 and is 

currently used as a whole-watershed acidification experiment. Since 1989, 35 kg N ha-1 yr-1 as 

ammonium sulfate has been applied to the watershed by aircraft. Watershed 7 (WS7; 24 ha) was 

cut in two phases between 1963 and 1967 and was maintained barren with herbicide until 1969. 

Since the stands in WS7 and WS3 are similar ages, WS7 served as an unfertilized reference for 

WS3 in this study. 

 

The Long-Term Soil Productivity experiment (LTSP) is a randomized block design (4 plot × 4 

block) with three treatment plots and one reference plot in each block. Each plot is 0.4 ha and 

contains a 0.2-ha area in which measurements are made (7.6-m treated buffer around each plot). 

The three LTSP treatments used in this study were the whole-tree harvest (REF), whole-tree 

harvest plus fertilizer (+N; 35 kg N ha-1 yr-1 as ammonium sulfate, hand applied), and whole-tree 

harvest plus fertilizer and lime (+N+L; 35 kg N ha-1 yr-1 as ammonium sulfate and 22.5 kg Ca  

ha-1 yr-1 as dolomite, hand applied). All aboveground biomass was harvested and removed in all 

three LTSP treatments in 1996 (Adams et al. 2004). The REF treatment served as an unfertilized 
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reference for the +N and +N+L treatment in this study. The addition of the +N+L treatment 

allows me to test whether the effects of ammonium sulfate application were due to direct effects 

of N fertilization, or due instead to secondary effects of N additions which are ameliorated by the 

addition of dolomitic lime; effects such as soil acidification, an increase in toxic aluminum 

levels, and/or the depletion of soil base cations. 

 

Experimental design 

To test the susceptibility of trees at various levels of soil N availability, I took advantage of 

severe storm damage from a strong winter wind event in 2009, and damage from heavy snows 

caused by Superstorm Sandy in 2012. The wind event occurred in late December of 2009 along a 

portion of Fork Mountain where the LTSP plots are located. Damage from the storm was highly 

localized, suggesting that it was the result of a microburst. Superstorm Sandy occurred three 

years after the localized wind event and caused widespread damage to trees throughout FEF. 

Prior to being downgraded to a Superstorm, Sandy was the largest diameter Atlantic hurricane 

ever recorded. Even though the center of the storm made landfall ca. 550 km east and 160 km 

north of the FEF, its effects were observed across a large portion of the eastern United States. By 

the time it reached the FEF on October 30th, 2012 it was downgraded to a super storm and there 

was only a mild increase in wind speed. The majority of damage to trees at the FEF (many still 

retaining a significant number of leaves) was caused by snow, with an accumulation estimated to 

have been as high as 1-m during the first 24 hours (C. Cassidy, on-site forest technician). To test 

the effect of N availability on storm damage to trees by severe wind (the 2009 storm), I 

compared damage across treatments in the LTSP experiment. To test the effect of N availability 

on storm damage to trees caused by a severe snow storm (the 2012 storm), I measured the 
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damage found in both WS3 (fertilized) and WS7 (unfertilized), and across LTSP treatments 

(compared using the difference in damage between storms). To determine if any patterns 

resulting from experimental fertilization could occur under less extreme differences in N 

availability, I also examined tree damage from snow across a native N-availability gradient in the 

uncut reference areas of the FEF - WS4, WS10, WS13, and the BCA.  

 

Damage estimates and N availability measurements 

Damage to trees was measured in all areas and used to form a binary classification - damaged or 

not damaged. Trees that had any crown damage, were bent, snapped, leaning, or tipped over 

were all classified as damaged. In the uncut reference areas (WS4, WS10, WS13, and BCA) 25-

m radius permanent growth plots were surveyed. The permanent growth plots were established 

between 1990 and 1996 and are used to track all trees > 2.54 cm diameter at breast height 

(DBH). A total of 27 growth plots were surveyed, five in the BCA, WS10, and WS13, and 12 in 

WS4. In both the fertilized (WS3) and unfertilized (WS7) areas, eighteen 10-m radius plots were 

selected randomly from a network of existing study sites and then surveyed for damage. The 

plots in WS3 and WS7 were equally divided among three aspect strata: 1 – “northeast”, 30-90°; 

2 – “south”, 150-210°; and 3 – “northwest”, 270-330°. Damage was measured among the three 

LTSP treatments using six randomly located 130-m2, square sub-plots in each of the four 

replicated treatment plots. The damage measured in each sub-plot was then summed for each 

plot. Within each plot I studied, every tree >2.54 cm DBH was identified by species, its DBH 

measured, and it was categorized as either damaged or not damaged. This information was then 

used to calculate the percentage of stems and basal area (BA) damaged in each plot. Damage 
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from the 2009 storm was surveyed in June 2011, and damage from the 2012 storm was surveyed 

in June 2013. 

 

To characterize N availability across the uncut reference areas, potential net N mineralization 

rates were measured using laboratory incubation. Within each plot, eight soil cores (2.2-cm 

diameter) of the mineral soil were taken to a depth of 5 cm and composited to create a single 

sample per plot. The soils were then sieved through a 5.6-mm mesh and approximately 10 g (wet 

weight) of the soil was placed individual plastic cups – one pre-incubation cup and one post-

incubation cup per plot. The soils were allowed to acclimate in the dark at room temperature (21-

24 ºC) for five days. Nitrate and ammonium were extracted from the soils in the pre-incubation 

cups by shaking the soil in 100 mL of 1 M KCl for 15 minutes. The extractant was filtered 

through a 0.45-µm filter and frozen until analyzed. Soils in the post-incubation cups were 

incubated 30 days before being extracted and the extracts frozen. Extracts were analyzed using 

Lachat QuickChem 8500 Series 2 Auto-analyzer, method 12-107-04-1-B for nitrate, and method 

12-107-06-2-A for ammonium with 1 M KCl as a carrier. Net N mineralization rates were 

calculated by dividing the change in inorganic N (nitrate + ammonium) per gram of soil that 

occurred during the incubation by the number of incubation days. 

 

Statistical analysis 

To test the effect of a native N-availability gradient – across plots in uncut reference areas – on 

both the percentage of basal area (BA) and percentage of stems damaged in the 2012 storm, 

these values were regressed against the measured net N mineralization rates. Slopes from these 
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two regressions were tested using t-tests. Since differential damage may occur among species, a 

two-way analysis of covariance (ANCOVA) that included species as a factor was used. The 

ANCOVA included model effects of N mineralization (NMIN), species (S), and NMIN × S, and 

the covariate in the model was NMIN. Only species occurring in four or more plots were used in 

the analysis. To test the effect of N fertilization between fertilized (WS3) and unfertilized (WS7) 

watersheds, I used t-tests that compared both the percentage of stems and BA damaged in the 

2012 storm. Similar to the N-gradient analysis, species-specific damage response to storms, may 

exist. To account for differences in species composition among WS3 and WS7, I employed a 

two-way analysis of variance (ANOVA). The ANOVA included model effects of watershed 

(WS), S, and WS × S, and only species occurring in four or more plots were used in the analysis. 

An ANOVA was also used to test treatment effects (+N, +N+L, and REF) on the percentage of 

stems and BA damaged in the LTSP experiment by both the 2009 and 2012 storm, separately for 

each storm. A t-test for differences in species composition was not used to test damage effects 

among LTSP treatments, because the LTSP is dominated by one species – Prunus pensylvanica 

(Fowler 2014). The ANOVA model included the effects of block, treatment (T), S, and T × S, 

and only species occurring in six or more plots were used in the analysis. Tukey’s HSD analysis 

was used to test for pairwise differences between treatments and species for WS 3 and WS7, and 

among LTSP treatments. Overall, 24 species were used in the analyses (Table 2), and all 

analyses were performed using SAS JMP. Transformations to ensure normality and 

homoscedasticity in residuals were applied when appropriate. 
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5.4 Results 
 

Wind storm in December 2009 

Across the entire LTSP, the 2009 wind storm damaged 26.2% of stems, and 31.9% of BA on 

average. The effect of species on the mean percentage of BA damaged by the 2009 wind storm 

did not depend on LTSP treatment. However, there were main effects of both species (F = 15.32, 

p < 0.0001) and treatment (F = 3.88, p = 0.0268).  With respect to the differential damage among 

tree species, both Betula lenta (t = 3.35, p = 0.0297) and Prunus pensylvanica (t = -3.16, p = 

0.0498) were damaged to a much greater extent (> 3x) than Acer rubrum (Figure 5-1c). With 

respect to differential damage among the experimental treatments, the mean percentage of BA 

damaged increased from REF, to +N+L, to +N (Figure 5-1a), with the mean BA damage being 

18.7% lower in REF than in +N (t = 2.71, p = 0.0244). Similar to the results for BA damage, the 

effect of species on the mean percentage of stems damaged did not depend on treatment. 

However, there was no main effect of species, but there were significant differences in the effect 

of the experimental treatments (F = 3.46, p = 0.0386). Specifically, the mean percentage stems 

damaged increased from REF, to +N+L, to +N (Figure 5-1b), with the mean stem damage being 

18.9% lower in REF than in +N (t = -2.63, p = 0.0298). 

 

Heavy snow-fall in October 2012 

By 2012, the snow storm, in addition to the damage from the wind storm of 2009, damaged 

55.3% of the stems, and 69.9% of the BA on average in the LTSP. There were no differential or 

main effects of either species or treatment on the mean percent of BA or stems damaged by 

heavy snow fall in the LTSP. However, a trend was apparent in the effect of species on mean 
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percent stem damage (F = 2.16, p = 0.0527) such that proportion of stem damage in Quercus 

rubra may have been greater than that experienced by both Prunus serotina (t = 2.94, p = 

0.0840) and Sassafras albidum (t = 2.88, p = 0.0981). 

 

Across fertilized (WS3) and unfertilized (WS7) watersheds, 49.6% of BA was damaged, and 

58.4% of stems were damaged by the snow storm of 2012. Comparing damage between the two 

watersheds, there was no difference in the percentage of stems that were damaged, but the 

percentage of BA area damaged was lower in WS3 (t = 2.23, one-tail p = 0.0163). WS3 

experienced damage to 44.8% of its BA as a result of the heavy snow fall in contrast to 54.6% of 

the BA being damaged in WS7. When species composition was included in the analysis, the 

effect of species on the mean percentage of BA damaged depended on the watershed (F = 2.06, p 

= 0.0178; Figure 5-2a).  In addition, when the mean percentage of BA damaged was averaged 

across watersheds, there was a main effect of species (F = 2.30, p = 0.0071), but no main effect 

of watershed was found when values were averaged across species. When the watersheds were 

compared with respect to the percentage of stems damaged, the effect of species depended on the 

watershed in a manner that was very similar to that observed for the percentage of BA damaged 

(F = 2.16, p = 0.0123; Figure 5-2b). There was also a main effect of species on the percentage of 

stems damaged when values were averaged across watersheds (F = 2.19, p = 0.0109), but no 

effect of watershed when values were averaged across species.  

 

Across the native N-availability gradient within the older, long-term reference areas, 38.5% of 

BA was damaged and 48.7% of stems were damaged by the snow storm of 2012. There was no 
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difference in either percent BA or stem damage among the N-availability levels. However, when 

species composition was included in the analysis, an trend indicated that the effect of species on 

the percent BA damaged by Superstorm Sandy may have depended on the level of net N 

mineralization (F = 1.15, p = 0.0801). Species differed in the percentage of BA damaged (F = 

3.22, p < 0.0001; Figure 5-3a), but there was no main effect of net N mineralization. Among the 

tree species present, the percentage of BA damaged was lower for L. tulipifera than Acer 

pensylvanicum (t = 4.55, p = 0.0016), R. psuedoacacia (t = 4.30, p = 0.0044), Acer saccharum (t 

= 4.18, p = 0.0069), Oxydendrum arboretum (t = 3.85, p = 0.0225), and Fagus grandifolia (t = 

3.84, p = 0.0235). The percentage of BA damaged was also lower for Q. rubra than A. 

pensylvanica (t = 3.69, p = 0.0385), and there was a trend towards lower damage for: (1) Q. 

rubra compared to R. psuedoacacia (t = 3.57, p = 0.0570); (2) Quercus prinus compared to both 

A. pensylvanicum (t = 3.56, p = 0.0586) and R. psuedoacacia (t – 3.54, p = 0.0630); and (3) 

Fraxinus americanus compared to both A. pensylvanicum (t = 3.52, p = 0.0661) and R. 

psuedoacacia (t = 3.52, p = 0.0666).  

 

Analysis of the percentage of stems damaged across the N-availability gradient resulted in a 

trend that indicated that the effect of species depended on the level of net N mineralization (F = 

1.61, p = 0.0504). Individual slopes of the relationship between N mineralization and damage for 

each species were not different from zero. There was a main effect of species on the percentage 

of BA damaged (F = 3.45, p < 0.0001; Figure 5-3b), but no main effect of net N mineralization. 

The percentage of stems damaged was lower in L. tulipifera than A. pensylvanicum (t = 4.06, p = 

0.0096), R. psuedoacacia (t = 3.99, p = 0.0141), and A. saccharum (t = 3.88, p = 0.0205). The 

percentage of damaged stems was also lower for Q. prinus compared to R. psuedoacacia (t = 
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3.62, p = 0.0488).  There was a trend toward lower percent stem damage when Q. prinus was 

compared to A. pensylvanicum (t = 3.59, p = 0.0533), when L. tulipifera was compared to O. 

arboretum (t = 3.58, p = 0.0551), and when Q. rubra was compared to both A. pensylvanicum (t 

= 3.46, p = 0.0792) and R. psuedoacacia (t = 3.44, p = 0.0792). 



 

128 

5.5 Discussion 
 

By assessing the impact of two severe storms that occurred in pre-existing fertilized and 

unfertilized areas at the Fernow Experimental Forest, and across a native N-availability gradient, 

I found evidence that differences in N availability can alter the percentage of both BA and the 

number of stems that were damaged. However, the influence of long-term changes in N 

availability on storm damage in our study sites depended on both the nature of the storm, and the 

species of tree.  

 

For a localized but severe wind storm, the results from the LTSP experiment indicate that strong 

winds damaged trees growing in N-fertilized stands (+N) more than those growing in unfertilized 

stands (REF). However, for the heavy snowfall associated with Superstorm Sandy, there was less 

overall damage in the N-fertilized watershed (WS3), when compared to the unfertilized 

watershed (WS7). And the lower percentage of damaged trees in WS3 seems to result, at least in 

part, from a differential effect of N fertilization on the damage experienced by various species. 

Furthermore, while some species tended to have a higher percentage of damage in WS3 (e.g. F. 

americanus and R. psuedoacacia), major differences in the abundance of different tree species 

may have had the strongest influence over the amount of total damage within each watershed.  

For example, there was a much greater abundance of canopy trees in the fertilized watershed 

(51% BA in WS3 vs. 20% BA in WS7) of a species that appears to have been less damaged by 

heavy snowfall (P. serotina).  Although a conservative Tukey’s HSD test did not detect 

differential damage in P. serotina between watersheds, the apparently lower level of damage to 

this species in WS3 (Figure 5-2), when combined with the much greater abundance of P. 
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serotina in WS3, may have contributed to the lower overall damage experienced in the fertilized 

watershed.  

 

Not surprisingly, previous studies have found that storm damage affects individual species 

differently (Everham and Brokaw 1996; Foster 1988; Rebertus et al. 1997). However, even for a 

given species, the nature of the damage may depend on the type of storm causing the damage.  

For example, one study found that P. serotina was more susceptible than other species to damage 

by ice storms (Bruederle and Stearns 1985), whereas our study suggests that, if anything, this 

species was less damaged than some species by strong winds and heavy snowfall. The reasons 

for inter- and intra-species differences in susceptibility to storm damage are undoubtedly 

numerous and complex.  However, for P. serotina at the FEF I speculate that its relatively thin 

canopy and early leaf drop, relative to other broadleaf deciduous species like Q. rubra (C. A. 

Walter, unpublished), prevented a significant retention of snow in the canopy during an late 

autumn snow event. A thin canopy, if associated with a lower density of canopy branches, could 

also explain why it had one of the lowest mean percentages of BA damage among species 

affected by the 2009 wind storm in LTSP plots (Figure 5-1). 

 

The potential for significant indirect effects of storms on forest communities have been noted in 

previous studies.  For example, storm damage can have drastic and lasting effects on tree 

composition, favoring the recruitment and regeneration of Betula nigra and Acer rubrum (Favjan 

et al. 2003). Disturbances that change tree composition can also lead to changes in the 

composition of the forest herbaceous layer (Whitney and Foster 1988). And, disturbance events 
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that that lead to large canopy openings have the potential to change the light levels in the 

herbaceous layer, ultimately leading to increased competition for this limiting resource among 

plants growing near the forest floor (Rajaniemi 2003).  

 

Although strong winds and heavy snowfalls in late autumn are currently exceptional events, it 

seems likely that strong winds will occur more frequently as Earth’s climate continues to change 

(Bender et al. 2010; Emanuel 2005; Grinsted et al. 2013).  Thus, if our results are generally 

applicable, then forests that have experienced high levels of N input in the past (such as forests in 

the eastern US), or forests that are currently experiencing increases in N deposition (such as 

forests in eastern China), may be more susceptible to damage by high winds in the future – 

which has potential effects for both tree and herbaceous layer composition. This research also 

underscores the importance of long-term ecological research sites that allow for opportunistic, 

and realistic, assessments of factors that may influence the consequences of unique weather-

related events in the future. 
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5.6 Tables and Figures 

 

Table 5-1. Study sites within the Fernow Experimental Forests that were used in the analysis of 

storm damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Area Treatment 

Approximate 
stand age 
(years) 

Number of 
plots 

LTSP Fertilization experiment 19 12 

WS7 Cut and unfertilized 45 18 

WS3 Cut and fertilized 45 18 

BCA Uncut reference 115 5 

WS4 Uncut reference 115 12 

WS10 Uncut reference 115 5 

WS13 Uncut reference 115 5 



 

132 

 

Table 5-2. Species used in analysis of storm damage across the Fernow Experimental Forest. 

    

Species Code 

Acer pensylvanicum ACPE 

Acer rubrum ACRU 

Acer saccharum ACSA 

Amelanchier arborea AMAR 

Aralia spinosa ARSP 

Betula lenta BELE 

Carya cordiformis CACO 

Fagus grandifolia FAGR 

Fraxinus americanus FRAM 

Liriodendron tulipifera LITU 

Magnolia accuminata MAAC 

Magnolia fraseri MAFR 

Nyssa sylvatica NYSY 

Ostrya virginiana OSVI 

Oxydendrum arboreum OXAR 

Prunus pensylvanica PRPE 

Prunus serotina PRSE 

Quercus alba QUAL 

Quercus prinus QUPR 

Quercus rubra QURU 

Robinia pseudoacacia ROPS 

Sassafras albidum SAAL 

Tilia americana TIAM 

Ulmus rubra ULRU 
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Figure 5-1. Mean percentage of basal area and stems damaged across treatments and 

species in unfertilized (REF), fertilized (+N), and fertilized and limed (+N+L) 

treatments in the LTSP from a wind storm in 2009. Error bars are 95% confidence 

intervals, since mean percent basal area damage and 2012 percent stem damage were 

back-transformed from square root transformations. Differing letters indicate mean 

differences from a Tukey’s HSD test at p < 0.05 and species codes are located in Table 

5-2. 
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Figure 5-2. Mean percent basal area and stems damaged by species in unfertilized (WS7) 

and fertilized (WS3) watersheds. Error bars represent one standard error. Species codes 

are located in Table 5-2. 
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Figure 5-3. Mean percent of stems and basal area damaged by species in the 2012 snow storm across uncut reference 

areas. Error bars represent one standard error and Tukey’s HSD (p < 0.05) test revealed % BA damaged of LITU was 

lower than ACPE, ROPS, ACSA, OXAR, and FAGR. The % BA damaged was also lower for QURU than ACPE. The 

% stems damaged was lower in LITU than ACPE, ROPS, and ACSA. The % stems damaged was also lower for QUPR 

ROPS. Species codes are located in Table 5-2. 
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Chapter 6. Conclusion: Advancing our understanding of the role of nitrogen addition in 

shaping the forest herbaceous layer 
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Summary of results 

I used a variety of long-term fertilization experiments and reference compartments throughout 

the Fernow Experimental Forest (FEF) to: 1) verify the precision and accuracy of the hand-area 

method of measuring cover in the forest herbaceous layer at the plant, population, and 

community scale; 2) determine if the effect of nitrogen (N) on Rubus spp. cover in the forest 

herbaceous layer depends on the light level between an N-fertilized and unfertilized watershed, 

and among N-fertilized and unfertilized plots; 3) test the extent to which the decline in richness 

in the forest herbaceous layer following N fertilization was due to either random species loss 

(RSL) or non-random species loss (NRSL), and to assess the extent to which the decline was due 

to the fertilizing or acidification effects of N; and 4) determine if N additions might have an 

indirect effect on the herbaceous layer by increasing tree damage from severe wind and snow 

storms. 

 

The hand-area method was found to be a very precise and potentially very accurate (when 

calibrated) approach for estimating forest herbaceous layer leaf area or cover. The method was 

precise because the relationship between estimated leaf area index (LAI) and actual LAI was 

consistent at the plant, population, and community scale. Further, there was no bias introduced 

from observers, which is a clear advantage of this approach over other visual estimation 

methods. The method tended to overestimate actual LAI by 39.1%, consistently across scales. 

Thus, to improve accuracy, the 39.1% overestimation could be subtracted from each estimated 

LAI value. Such a correction factor could be calculated by individual practitioners of the method 

to obtain accurate LAI estimates for comparisons with other sites. Conversely, the method could 
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be used without a correction factor to compare relative differences in cover or leaf area within a 

site. 

 

With respect to the effects of N and light on Rubus spp. cover, I found a significant interaction 

between the two factors. At the highest light levels, the relative Rubus spp. cover was ca. 85% 

higher in N-fertilized fertilized treatments than unfertilized treatments. Yet, when light levels 

were low, there was no difference in relative Rubus spp. cover between fertilized and unfertilized 

treatments. These results confirm that Rubus spp. at FEF are nitrophilic because they were able 

to utilize excess N to compete better for light. Since similar increases in relative Rubus spp. 

cover were observed over a large timespan – experiments ranging from one growing season to 23 

years – I infer that the dominance of Rubus spp. in response to N happens quickly, and is long 

lasting. Therefore, changes in species composition in the herbaceous layer in response to N 

deposition that are driven by nitrophilic species can occur immediately, and persist with 

continued input. 

 

Testing the mechanisms that drive changes in species richness under N fertilization, I discovered 

that species richness declined in N-fertilized plots, when compared to unfertilized plots. The 

mechanisms of random species loss (RSL) and non-random species loss (NRSL) in the forest 

herbaceous layer both operated to decrease species richness in the forest herbaceous layer, with 

NRSL dominating in the final sampling year of the experiment. Across all sampling years, 

48.6% of species losses in N-fertilized plots could be attributed to NRSL, and 60.1 % of the 

species losses in unfertilized plots could be attributed to NRSL. These mechanisms were driven, 

in part, by the advantage conferred to a few nitrophilic species – particularly Rubus spp. After 15 
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years of fertilization, ~ 15% of total herbaceous layer density was occupied by Rubus spp. in 

fertilized plots. By comparison, Rubus spp. only made up ~ 3% of the total density in unfertilized 

plots. 

 

Finally, testing the effect of N on storm damage in forest trees, I found that 18.7% more basal 

area, and 18.9% more stems were damaged by a severe wind storm in fertilized plots, when 

compared to unfertilized plots. In contrast, I discovered that the percent of basal area damaged 

was lower in a fertilized watershed than an unfertilized watershed in response to Superstorm 

Sandy, a severe snow storm that occurred in late fall. The damage by the snow storm was driven 

by differences in the composition of tree species between the watersheds, since there was 

evidence that the effect of N fertilization on damage depended on the species of tree. A similar 

differential pattern of N availability and species was observed when damaged trees were 

surveyed across a native N-availability gradient. 

 

Implications for the existing conceptual framework 

The results of this dissertation suggest that three modifications should be considered to the 

conceptual framework presented by Gilliam (2006; Figure1-1) for understanding the effects of N 

on the species composition of the forest herbaceous layer: (1) the inclusion of the effects of 

random species loss (RSL); (2) an emphasis on the magnitude of both the interspecific 

competition portion of non-random species loss (NRSL) and RSL, relative to more distal and 

secondary effects of N; and (3) the inclusion of the indirect effect of N on herbaceous layer 

communities, by increasing the susceptibility of forest trees to wind damage. 
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Results from Chapter 4 highlighted the effect of both NRSL and RSL in decreasing species 

richness in the forest herbaceous layer. Previous studies in forests also have found evidence of 

reductions in richness due to RSL (Thomas et al. 1999), while studies in herb-dominated systems 

have found evidence that both NRSL and RSL mechanisms decrease richness (Stevens and 

Carson 1999, Hautier et al. 2009). In light of my results, and the results from previous work, it is 

clear that both NRSL and RSL may have a significant role in shaping the herbaceous layer 

composition of a forest under N additions, and that the magnitude of these effects is large 

relative to more indirect effects of N (Figure 6-1). 

 

Results from Chapter 3 also helped to determine the magnitude of the direct effects of N 

additions on NRSL. In one study contained in that chapter, Rubus allegheniensis plants were 

taken from the FEF and transplanted in a field experiment to determine if the effect of N on the 

leaf area of R. allegheniensis depended on the level of light. I found that leaf area was 130.2% 

greater in the N-fertilized plants at high light, when compared to unfertilized plants at high light. 

Growing these plants in a field experiment over one growing season allowed me to control for 

some of the indirect N effects proposed in the Gilliam (2006) conceptual framework – 

particularly those of herbivory, species invasions, and exotic earthworm activity. Additionally, 

we can reasonably infer from the experimental design that other indirect effects of N were 

minimal, if not, completely absent since there were no obvious signs of pathogenic infection, and 

the potting soil used came from a homogenous mixture, presumably meaning that the potential 

for  mycorrhizal inoculation was equal for each plant. Controlling for these factors in this 

experiment, I conclude that the large increase in leaf area in fertilized R. allegheniensis plants 

under high light levels is a direct effect of N. Accordingly, I suggest that the conceptual 
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framework indicate a greater magnitude of direct N effects on the contribution of interspecific 

competition to NRSL, and the magnitude of those effects be carried through to affect species 

richness (Figure 6-1). 

 

Results from Chapter 5 present a potentially novel indirect effect of N that could lead to changes 

in species composition in the forest herbaceous layer. In that chapter I discovered that a wind 

storm caused more tree damage in fertilized plots than those that weren’t fertilized, and that the 

percentage of damaged trees was different among species. These results pose two potential 

scenarios, each with implications for species composition in the herbaceous layer: 1) canopy 

gaps created by wind-storm damage are greater in both quantity and size under N additions, 

which causes more light to reach the herbaceous layer; and 2) differential damage among species 

could lead to changes in tree composition that, in turn, affect herbaceous layer composition later 

in succession. In Chapter 3 I demonstrated that the effect of N on Rubus spp. was only realized 

when there was sufficient light. Under the first scenario (more and larger canopy gaps), storm 

damage that led to more light in an N-fertilized area could dramatically enhance the cover of 

Rubus spp., increase the role of non-random species loss (NRSL), and decrease species richness. 

Thus, competition for light in this scenario emerges as the major factor affecting composition in 

N-amended areas (Hautier et al. 2009). Under the second scenario (differential species damage), 

storm damage that led to a shift in tree species could affect the herbaceous layer composition by 

increasing competition, and/or changing litter chemistry (Crozier and Boerner 1984, Whitney 

and Foster 1988). Thus, I suggest that storm damage be added an intermediary step between N 

deposition and both NRSL and RSL mechanisms. Although the current relative magnitude of this 

effect is low, it is likely to increase as the frequency of large-magnitude storms increases in a 
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warmer world (Emanuel 2005, Bender et al. 2010, Grinsted et al. 2012, 2013). Additionally, 

Since the level of tree damage from storms is species specific, and the herbaceous layer can 

influence the composition of trees by altering tree recruitment (Balandier et al. 2013; George and 

Bazzaz 2014), I also suggest that there is a potential for feedback from herbaceous layer to the 

level of damage from storms (dashed arrows in Figure 6-1). 

 

Implications for biodiversity 

The eastern broadleaf deciduous forest region of North America is ranked as globally 

outstanding, in terms of biological distinctiveness – a metric that accounts for the diversity of 

species, ecosystems, and ecological processes (Ricketts et al. 1999). And it is the richness of the 

herbaceous layer that drives this globally distinctive diversity ranking (Gilliam 2007). Therefore, 

if biodiversity is to be preserved in these forests, it is of critical importance to understand the 

underlying mechanisms that lead to declines in richness in the herbaceous layer, under N 

additions. This research reaffirms the direct effects that N can have on the forest herbaceous 

layer and explores in more depth some mechanistic functions for changes in species composition 

in response to N. Additionally, the results bring to light a potentially novel indirect effect of N on 

the composition of the herbaceous layer – increasing tree susceptibility to storm damage – that is 

likely to become more significant as the frequency of large-magnitude storms increases under 

climate change. Thus, if these results are indicative of broadleaf deciduous forests everywhere 

(e.g. Chinese forests, which are currently receiving historically high rates of N deposition), then 

forest biodiversity is threatened from N deposition, and the loss of forest species is likely to be 

exacerbated by climate change. 
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Figure 6-1. A conceptual model of the linkages and feedbacks among biotic factors that 

lead to declines in forest biodiversity under N deposition, modified from Gilliam (2006). 

Colored boxes and arrows indicate modifications suggested by the results of this 

dissertation, the magnitude of effects is indicated by the size of the arrow, and dashed 

arrows indicate a potential feedback whereby herbaceous layer community can affect 

recruitment of overstory tree species. 
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Table A-1. Nitrophily status of plants in the Long-Term Productivity Experiment. Index values 

were assigned or based on prior observations and experiments, the species-specific index value in 

the Ellenberg index (Hill et al. 1999), or the median index value from the congeners from the 

Ellenberg index when species-specific values were unavailable. Index values greater than five 

were categorized as nitrophilic. 

 

 

Taxon Form Index Status Source

Acer pensylvanicum tree 6 nitrophilic Hill et al. 1999

Acer rubrum tree 3 non-nitrophilic Peterjohn et al. 2015

Acer saccharum tree 8 nitrophilic Peterjohn et al. 2015

Actaea pachypoda herb 6 nitrophilic Hill et al. 1999

Actaea racemosa herb 6 nitrophilic Hill et al. 1999

Ageratina altissima herb 7 nitrophilic Wang and Feng 2005

Amaranthus spp. herb 7 nitrophilic Hill et al. 1999

Amelanchier arborea shrub 1 non-nitrophilic Peterjohn et al. 2015

Aralia nudicaulis herb 6 nitrophilic Allen 2004

Arisaema triphyllum herb 3 non-nitrophilic Fraterrigo et al. 2009

Aristolochia spp. vine 5 non-nitrophilic Ulrey 2002

Aster spp. herb 6 nitrophilic Hill et al. 1999

Athryum filix-femina herb 7 nitrophilic Brunet at al. 1998

Betula alleghaniensis tree 4 non-nitrophilic Hill et al. 1999

Betula lenta tree 4 non-nitrophilic Peterjohn et al. 2015

Boehmeria cylindrica herb 4 non-nitrophilic Welch et al. 2007

Cardamine angustata herb 6 nitrophilic Hill et al. 1999

Carex spp. graminoid 3 non-nitrophilic Hill et al. 1999

Carya cordiformis tree 4 non-nitrophilic Smalley 1990

Caulophyllum thalictroides herb 6 nitrophilic Spies and Barnes 1985

Chamerion angustifolium herb 5 non-nitrophilic Hill et al. 1999

Circaea lutetiana herb 6 nitrophilic Hill et al. 1999

Clematis virginiana vine 5 non-nitrophilic Hill et al. 1999

Collinsonia canadensis herb 5 non-nitrophilic Rees 2003

Convallaria majuscula herb 5 non-nitrophilic Hill et al. 1999

Cornus alternifolia tree 6 nitrophilic Hill et al. 1999

Dennstaedtia punctilobula herb 3 non-nitrophilic Brach 1993

Dichanthelium clandestinum grass 2 non-nitrophilic Rentch et al. 2005

Dioscorea villosa herb 4 non-nitrophilic Ulrey 2002

Dryopteris carthusiana herb 4 non-nitrophilic Hill et al. 1999

Fagus grandifolia tree 5 non-nitrophilic Hill et al. 1999

Fraxinus americana tree 4 non-nitrophilic Welch et al. 2007

Galium spp. herb 3.5 non-nitrophilic Hill et al. 1999

Geranium maculatum herb 6 nitrophilic Hill et al. 1999

Goodyera pubescens herb 2 non-nitrophilic Hill et al. 1999

Nitrophily
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Table A-1 continued 

Taxon Form Index Status Source

Graminoid graminoid 6 nitrophilic Hill et al. 1999

Hexastylis virginica herb 7 nitrophilic Bernhardt-Romermann et al. 2007

Impatiens pallida herb 6.5 nitrophilic Hill et al. 1999

Lindera Benzoin shrub 5 non-nitrophilic Welch et al. 2007

Liriodendron tulipifera tree 6 nitrophilic Peterjohn et al. 2015

Lycopodium spp. herb 3 non-nitrophilic Aerts and Bobbink 1999

Magnolia acuminata tree 2 non-nitrophilic Peterjohn et al. 2015

Magnolia fraseri tree 4 non-nitrophilic Johnson et al. 2010

Medeola virginiana herb 4 non-nitrophilic Kenlan et al. 2009

Monarda clinopodia herb 3 non-nitrophilic usda

Monotropa uniflora herb 2 non-nitrophilic Hill et al. 1999

Nyssa sylvatica tree 3 non-nitrophilic Peterjohn et al. 2015

Osmorhiza clatonia herb 3 non-nitrophilic Welch et al. 2007

Ostrya virginiana tree 2 non-nitrophilic Talhelm et al. 2013

Oxalis stricta herb 4.5 non-nitrophilic Hill et al. 1999

Oxydendron arboreum tree 3 non-nitrophilic Fabio 2006

Parthenocissus quinquefolia herb 4 non-nitrophilic Chapman et al. 2015

Phytolacca americana herb 6 nitrophilic Cahill and Casper 1999

Podophyllum peltatum herb unknown unknown NA

Polygantum biflorum herb 5 non-nitrophilic Hill et al. 1999

Polygonum spp. herb 5.5 nitrophilic Fraterrigo et al. 2009

Polystichum acrostichoides fern 6 nitrophilic Welch et al. 2007

Potentilla simplex herb 2 non-nitrophilic Hill et al. 1999

Prenanthes altissima herb 7 nitrophilic Fraterrigo et al. 2009

Prosartes maculata herb 3 non-nitrophilic Kaye et al. 2008

prunus pensylvanica tree 6 nitrophilic Hill et al. 1999

Prunus serotina tree 6 nitrophilic Hill et al. 1999

Pycanthemum virginianum herb 6 nitrophilic McPhee 2013

Quercus alba tree 4 non-nitrophilic Hill et al. 1999

Quercus prinus tree 4 non-nitrophilic Hill et al. 1999

Quercus rubra tree 5 non-nitrophilic Peterjohn et al. 2015

Robinia pseudoacacia tree 6 nitrophilic Hill et al. 1999

Rosa carolina herb 4 non-nitrophilic Hill et al. 1999

Rubus spp. shrub 8 nitrophilic Walter et al. 2015

Rumex spp. herb 7 nitrophilic Hill et al. 1999

Sambucus canadensis shrub 7 nitrophilic Hill et al. 1999

Sassafras albidum tree 2 non-nitrophilic Hutchinson et al. 1999

Smilax ecirrhata herb 4 non-nitrophilic Martin 2013

Smilax rotundifolia vine 4 non-nitrophilic Martin 2013

Nitrophily
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Taxon Form Index Status Source

Streptopus lanceolatus herb unknown unknown NA

Thelypteris noveboracensis herb 5 non-nitrophilic Hill et al. 1999

Tilia americana tree 6 nitrophilic Hill et al. 1999

Tussilago farfara herb 6 nitrophilic Hill et al. 1999

Urtica dioica herb 8 nitrophilic Hill et al. 1999

Viburnum acerifolium shrub 5.5 nitrophilic Hill et al. 1999

Viola spp. herb 2 non-nitrophilic Hill et al. 1999

Vitis spp. vine 3 non-nitrophilic Strenbom et al. 2003

Zanthoxylum americanum tree unknown unknown NA

Nitrophily
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Diff. Diff. Diff. Diff.

+N (1997) vs. +N (2001) 355.5 4.78 ** 2.8 1.11  -0.004 -0.03  -0.035 -0.94  

+N (1997) vs. +N (2006) 450.3 6.05 **** 2.5 1.01  -0.061 -0.39  -0.060 -1.61  

+N (1997) vs. +N (2011) 339.3 4.56 ** 3.5 1.41  0.172 1.08  0.009 0.25  

+N (1997) vs. REF (1997) -102.3 -1.37  -6.0 -2.42  -0.193 -1.21  -0.005 -0.15  

+N (1997) vs. REF (2001) 148.5 1.99  -2.8 -1.11  -0.082 -0.52  0.001 0.04  

+N (1997) vs. REF (2006) 331.3 4.45 ** -3.3 -1.31  -0.005 -0.03  0.029 0.78  

+N (1997) vs. REF (2011) 225.3 3.03  0.8 0.30  0.443 2.78  0.135 3.60 *

+N (2001) vs. +N (2006) 94.8 1.27  -0.3 -0.10  -0.057 -0.36  -0.025 -0.67  

+N (2001) vs. +N (2011) -16.3 -0.22  0.8 0.30  0.176 1.1  0.045 1.20  

+N (2001) vs. REF (1997) -457.8 -6.15 **** -8.8 -3.53 * -0.189 -1.18  0.030 0.80  

+N (2001) vs. REF (2001) -207.0 -2.78  -5.5 -2.22  -0.078 -0.49  0.037 0.98  

+N (2001) vs. REF (2006) -24.3 -0.33  -6.0 -2.42  0.000 0  0.065 1.73  

+N (2001) vs. REF (2011) -130.3 -1.75  -2.0 -0.81  0.447 2.81  0.170 4.55 **

+N (2006) vs. +N (2011) -111.0 -1.49  1.0 0.40  0.233 1.46  0.070 1.87  

+N (2006) vs. REF (1997) -552.5 -7.42 **** -8.5 -3.43 º -0.131 -0.83  0.055 1.47  

+N (2006) vs. REF (2001) -301.8 -4.05 * -5.3 -2.12  -0.021 -0.13  0.062 1.65  

+N (2006) vs. REF (2006) -119.0 -1.60  -5.8 -2.32  0.057 0.36  0.090 2.40  

+N (2006) vs. REF (2011) -225.0 -3.02  -1.8 -0.71  0.504 3.16  0.195 5.22 ***

+N (2011) vs. REF (1997) -441.5 -5.93 **** -9.5 -3.83 * -0.365 -2.29  -0.015 -0.40  

+N (2011) vs. REF (2001) -190.8 -2.56  -6.3 -2.52  -0.254 -1.6  -0.008 -0.21  

+N (2011) vs. REF (2006) -8.0 -0.11  -6.8 -2.72  -0.176 -1.11  0.020 0.53  

+N (2011) vs. REF (2011) -114.0 -1.53  -2.8 -1.11  0.271 1.7  0.125 3.35 º

+N+L (1997) vs. +N (1997) 76.8 1.03  0.0 0.00  -0.005 -0.03  -0.001 -0.03  

+N+L (1997) vs. +N (2001) 432.3 5.81 **** 2.8 1.11  -0.009 -0.06  -0.036 -0.97  

+N+L (1997) vs. +N (2006) 527.0 7.08 **** 2.5 1.01  -0.066 -0.42  -0.061 -1.64  

+N+L (1997) vs. +N (2011) 416.0 5.59 *** 3.5 1.41  0.167 1.05  0.009 0.23  

+N+L (1997) vs. +N+L (2001) 429.3 5.77 **** 2.8 1.11  0.074 0.47  -0.008 -0.21  

+N+L (1997) vs. +N+L (2006) 396.8 5.33 *** -0.5 -0.20  -0.015 -0.09  -0.007 -0.19  

+N+L (1997) vs. +N+L (2011) 414.3 5.56 *** 2.3 0.91  0.165 1.04  0.028 0.75  

+N+L (1997) vs. REF (1997) -25.5 -0.34  -6.0 -2.42  -0.198 -1.24  -0.006 -0.17  

+N+L (1997) vs. REF (2001) 225.3 3.03  -2.8 -1.11  -0.087 -0.55  <0.001 0.01  

+N+L (1997) vs. REF (2006) 408.0 5.48 *** -3.3 -1.31  -0.009 -0.06  0.028 0.76  

+N+L (1997) vs. REF (2011) 302.0 4.06 * 0.8 0.30  0.438 2.75  0.134 3.57 *

+N+L (2001) vs. +N (1997) -352.5 -4.74 ** -2.8 -1.11  -0.079 -0.5  0.007 0.19  

+N+L (2001) vs. +N (2001) 3.0 0.04  0.0 0.00  -0.083 -0.52  -0.028 -0.76  

+N+L (2001) vs. +N (2006) 97.8 1.31  -0.3 -0.10  -0.141 -0.88  -0.053 -1.43  

+N+L (2001) vs. +N (2011) -13.3 -0.18  0.8 0.30  0.093 0.58  0.017 0.44  

t-ratio

Richness

t-ratio

Diversity

t-ratio

Evenness

Contrast

Density

t-ratio

Table A-2. Results of Tukey’s HSD tests of pairwise comparisons in plant density (D), species 

richness (R), diversity (H’), and evenness (J) among years and treatments. 
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Table A-2 continued 

 

****p ≤ 0.0001;   ***p ≤ 0.001;   **p ≤ 0.01;   *p ≤ 0.05;   ºp < 0.1 
 

 

 

 

Diff. Diff. Diff. Diff.

+N+L (2001) vs. +N+L (2006) -32.5 -0.44  -3.3 -1.31  -0.089 -0.56  0.001 0.03  

+N+L (2001) vs. +N+L (2011) -15.0 -0.20  -0.5 -0.20  0.091 0.57  0.036 0.97  

+N+L (2001) vs. REF (1997) -454.8 -6.11 **** -8.8 -3.53 * -0.272 -1.71  0.002 0.04  

+N+L (2001) vs. REF (2001) -204.0 -2.74  -5.5 -2.22  -0.161 -1.01  0.009 0.23  

+N+L (2001) vs. REF (2006) -21.3 -0.29  -6.0 -2.42  -0.084 -0.53  0.036 0.97  

+N+L (2001) vs. REF (2011) -127.3 -1.71  -2.0 -0.81  0.364 2.28  0.142 3.79 *

+N+L (2006) vs. +N (1997) -320.0 -4.30 ** 0.5 0.20  0.010 0.06  0.006 0.16  

+N+L (2006) vs. +N (2001) 35.5 0.48  3.3 1.31  0.006 0.04  -0.029 -0.79  

+N+L (2006) vs. +N (2006) 130.3 1.75  3.0 1.21  -0.051 -0.32  -0.054 -1.45  

+N+L (2006) vs. +N (2011) 19.3 0.26  4.0 1.61  0.182 1.14  0.015 0.41  

+N+L (2006) vs. +N+L (2011) 17.5 0.24  2.8 1.11  0.180 1.13  0.035 0.94  

+N+L (2006) vs. REF (1997) -422.3 -5.67 **** -5.5 -2.22  -0.183 -1.15  <0.001 0.01  

+N+L (2006) vs. REF (2001) -171.5 -2.30  -2.3 -0.91  -0.072 -0.45  0.007 0.20  

+N+L (2006) vs. REF (2006) 11.3 0.15  -2.8 -1.11  0.006 0.03  0.035 0.94  

+N+L (2006) vs. REF (2011) -94.8 -1.27  1.3 0.50  0.453 2.84  0.141 3.76 *

+N+L (2011) vs. +N (1997) -337.5 -4.53 ** -2.3 -0.91  -0.170 -1.07  -0.029 -0.78  

+N+L (2011) vs. +N (2001) 18.0 0.24  0.5 0.20  -0.174 -1.09  -0.065 -1.72  

+N+L (2011) vs. +N (2006) 112.8 1.51  0.3 0.10  -0.231 -1.45  -0.090 -2.39  

+N+L (2011) vs. +N (2011) 1.8 0.02  1.3 0.50  0.002 0.01  -0.020 -0.53  

+N+L (2011) vs. REF (1997) -439.8 -5.91 **** -8.3 -3.33 º -0.363 -2.28  -0.035 -0.93  

+N+L (2011) vs. REF (2001) -189.0 -2.54  -5.0 -2.02  -0.252 -1.58  -0.028 -0.74  

+N+L (2011) vs. REF (2006) -6.3 -0.08  -5.5 -2.22  -0.175 -1.1  <0.001 0.01  

+N+L (2011) vs. REF (2011) -112.3 -1.51  -1.5 -0.61  0.273 1.71  0.106 2.82  

REF (1997) vs. REF (2001) 250.8 3.37 º 3.3 1.31  0.111 0.69  0.007 0.19  

REF (1997) vs. REF (2006) 433.5 5.82 **** 2.8 1.11  0.188 1.18  0.035 0.93  

REF (1997) vs. REF (2011) 327.5 4.40 ** 6.8 2.72  0.636 3.99 * 0.140 3.75 *

REF (2001) vs. REF (2006) 182.8 2.45  -0.5 -0.20  0.078 0.49  0.028 0.75  

REF (2001) vs. REF (2011) 76.8 1.03  3.5 1.41  0.525 3.3 º 0.133 3.56 *

REF (2006) vs. REF (2011) -106.0 -1.42  4.0 1.61  0.447 2.81  0.105 2.82  

Contrast

Density Richness Diversity Evenness

t-ratio t-ratio t-ratio t-ratio
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Table A-3. List of differences in number of individuals per 5 m2 between a simulated 

assemblage level thinning distribution and observed density (δ) between 1997 and 2001 among 

REF (R), +N, and +N+L treatments. Bold p-values indicate significant differences based on a 

sequential Bonferroni test of probability tests. 

 

 

Mean SE Mean SE Mean SE

Acer pensylvanicum -4.57 3.10 -0.93 1.85 -0.02 1.04 0.1621 0.0732 0.3807

Acer rubrum -7.17 5.11 -0.47 1.22 -0.37 1.33 0.0854 0.0846 0.4975

Acer saccharum 2.59 0.19 0.90 0.15 6.00 0.00 <0.0001 <0.0001 <0.0001

Actaea pachypoda -4.75 4.19 0.00 0.00 0.00 0.00 0.3148 0.3148 1.0000

Actaea racemosa 1.32 0.64 0.00 0.00 -0.41 0.43 0.0479 0.0252 0.3702

Ageratina altissima 0.33 0.19 -1.03 0.99 0.00 0.00 0.0425 0.1365 0.3200

Amaranthus spp. -0.17 0.19 0.00 0.00 0.00 0.00 0.4786 0.4786 1.0000

Amelanchier arborea 0.00 0.00 0.00 0.00 -0.20 0.20 1.0000 0.4073 0.4073

Aralia nudicaulis 0.00 0.00 0.00 0.00 -1.20 1.07 1.0000 0.3148 0.3148

Arisaema triphyllum 1.69 0.40 0.42 0.14 1.25 0.00 0.0091 0.2077 <0.0001

Aristolochia spp. -0.16 0.19 0.00 0.00 -1.24 1.18 0.4871 0.3278 0.3176

Aster spp. 4.45 0.76 0.00 0.00 -0.12 0.18 <0.0001 <0.0001 0.6430

Athryum filix-femina 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Betula alleghaniensis -1.62 0.90 0.03 0.22 -0.51 0.54 0.0432 0.1782 0.2571

Betula lenta 7.24 0.29 0.65 0.70 7.09 0.55 <0.0001 0.5055 <0.0001

Boehmeria cylindrica 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Cardamine angustata 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Carex spp. -7.51 3.12 2.01 1.05 -0.94 0.76 0.0005 0.0173 0.0228

Carya cordiformis 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Caulophyllum thalictroides 0.25 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Chamerion angustifolium -0.94 0.33 -0.18 0.19 -0.14 0.17 0.0519 0.0357 0.6423

Circaea lutetiana 0.00 0.00 0.00 0.00 -0.10 0.15 1.0000 0.6489 0.6489

Clematis virginiana 0.00 0.00 0.25 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Collinsonia canadensis -0.16 0.19 0.00 0.00 0.00 0.00 0.4867 0.4867 1.0000

Convallaria majuscula 0.25 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Cornus alternifolia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Dennstaedtia punctilobula -0.47 0.34 0.00 0.00 -0.42 3.84 0.1710 0.5056 0.4169

Dichanthelium clandestinum 6.32 0.87 -1.65 1.23 0.00 0.00 <0.0001 <0.0001 0.0981

Dioscorea villosa -0.17 0.19 -0.10 0.15 -0.66 0.54 0.6233 0.3075 0.2782

Dryopteris carthusiana 2.00 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Fagus grandifolia 0.00 0.00 0.75 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Fraxinus americana -0.09 0.34 0.50 0.00 1.33 0.22 <0.0001 0.0009 0.0087

Galium spp. 0.33 0.19 -0.08 0.13 0.25 0.00 0.1031 0.5235 <0.0001

Geranium maculatum 0.00 0.00 0.00 0.00 -0.31 0.34 1.0000 0.4137 0.4137

Goodyera pubescens 0.00 0.00 -0.08 0.14 0.00 0.00 0.7091 1.0000 0.7091

N v. NL

p-value

R v. NL R v. N

δ

Taxon

R  +N+L  +N 
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Table A-3 continued 

 

Mean SE Mean SE Mean SE

Graminoid 1.04 0.70 2.04 0.25 0.50 0.00 0.1321 0.2739 <0.0001

Hexastylis virginica 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Impatiens pallida 0.50 0.00 0.00 0.00 0.25 0.00 <0.0001 <0.0001 <0.0001

Lindera Benzoin 0.00 0.00 0.00 0.00 0.25 0.00 1.0000 <0.0001 <0.0001

Liriodendron tulipifera -20.79 16.96 -12.80 4.56 -11.54 2.80 0.3505 0.3243 0.4183

Lycopodium spp. 0.00 0.00 0.25 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Magnolia acuminata -0.19 0.51 0.07 0.24 0.89 0.55 0.4410 0.0964 0.1363

Magnolia fraseri 0.12 0.17 2.00 0.00 0.50 0.00 <0.0001 <0.0001 <0.0001

Medeola virginiana -3.18 1.99 0.00 0.00 -0.36 0.40 0.0623 0.0934 0.4056

Monarda clinopodia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Monotropa uniflora -0.16 0.18 -0.10 0.15 0.00 0.00 0.6325 0.4873 0.6439

Nyssa sylvatica 0.00 0.00 -0.21 0.25 0.00 0.00 0.4843 1.0000 0.4843

Osmorhiza clatonia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Ostrya virginiana -0.17 0.19 0.00 0.00 0.00 0.00 0.4832 0.4832 1.0000

Oxalis stricta 0.00 0.00 0.00 0.00 -0.08 0.14 1.0000 0.7019 0.7019

Oxydendron arboreum 0.75 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Parthenocissus quinquefolia 0.00 0.00 0.00 0.00 -0.20 0.20 1.0000 0.4092 0.4092

Phytolacca americana -29.75 10.96 -31.94 12.89 -38.46 31.91 0.4481 0.4116 0.4469

Podophyllum peltatum 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Polygantum biflorum -0.51 0.49 0.00 0.00 0.00 0.00 0.3355 0.3355 1.0000

Polygonum spp. 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Polystichum acrostichoides -0.32 2.02 2.64 0.30 0.08 0.46 0.0778 0.4457 <0.0001

Potentilla simplex -0.97 1.83 0.00 0.00 0.00 0.00 0.3363 0.3363 1.0000

Prenanthes altissima 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Prosartes maculata 0.67 0.33 0.25 0.00 0.00 0.00 0.1647 0.0750 <0.0001

prunus pensylvanica 0.84 1.52 2.62 4.07 1.21 2.47 0.3243 0.4493 0.3751

Prunus serotina -5.80 8.61 -7.17 12.02 12.18 6.24 0.4713 0.0518 0.0790

Pycanthemum virginianum 0.00 0.00 0.00 0.00 -0.80 0.72 1.0000 0.3153 0.3153

Quercus alba 0.25 0.00 0.25 0.00 0.25 0.00 1.0000 1.0000 1.0000

Quercus prinus -0.47 0.35 0.00 0.00 0.00 0.00 0.1739 0.1739 1.0000

Quercus rubra -0.74 0.38 0.13 0.30 0.34 0.77 0.0639 0.1379 0.4438

Robinia pseudoacacia -0.70 0.51 1.47 0.45 -0.14 0.82 0.0016 0.3072 0.0382

Rosa carolina 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Rubus spp. 68.55 5.45 63.51 2.27 56.71 3.15 0.2138 0.0207 0.0345

Rumex spp. 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Sambucus canadensis -1.62 0.73 -1.28 1.04 -0.06 0.12 0.4047 0.0168 0.1571

Sassafras albidum -2.96 7.46 -7.94 5.67 -9.64 10.42 0.2993 0.3170 0.4698

Smilax ecirrhata 0.58 0.19 0.42 0.14 0.00 0.00 0.4112 0.0152 0.0345

Smilax rotundifolia -2.08 1.14 3.37 0.84 6.53 0.75 0.0002 <0.0001 0.0023

N v. NL

Taxon

δ p-value

R  +N+L  +N R v. NL R v. N



 

161 

Table A-3 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean SE Mean SE Mean SE

Streptopus lanceolatus 3.32 1.32 -0.53 0.72 0.38 0.18 0.0116 0.0315 0.1482

Thelypteris noveboracensis 0.43 2.68 3.53 0.43 5.66 0.60 0.1449 0.0341 0.0081

Tilia americana 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Tussilago farfara 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Urtica dioica 9.01 12.26 5.41 3.67 0.84 13.62 0.3666 0.3396 0.3836

Viburnum acerifolium 0.00 0.00 -0.12 0.18 -0.06 0.12 0.6470 0.7858 0.7039

Viola spp. -9.04 17.48 -15.53 13.04 -22.97 14.66 0.3913 0.2811 0.3674

Vitis spp. -5.93 15.47 -9.04 4.90 -15.81 2.57 0.4300 0.2774 0.1175

Zanthoxylum americanum -0.19 1.36 3.19 0.27 0.36 0.41 0.0004 0.4037 <0.0001

N v. NL

Taxon

δ p-value

R  +N+L  +N R v. NL R v. N
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Table A-4. List of differences in number of individuals per 5 m2 between a simulated 

assemblage level thinning distribution and observed density (δ) between 1997 and 2006 among 

REF (R), +N, and +N+L treatments. Bold p-values indicate significant differences based on a 

sequential Bonferroni test of probability tests. 

 

 

Mean SE Mean SE Mean SE

Acer pensylvanicum -0.24 1.53 -0.63 1.66 -1.22 1.07 0.4437 0.3097 0.4081

Acer rubrum -5.84 3.95 -0.56 1.22 1.45 0.79 0.0889 0.0037 0.0852

Acer saccharum 0.92 0.13 1.42 0.13 1.25 0.00 0.0251 <0.0001 0.2791

Actaea pachypoda -2.21 2.00 0.00 0.00 0.00 0.00 0.3143 0.3143 1.0000

Actaea racemosa 0.25 0.51 0.50 0.00 -0.18 0.25 0.4541 0.2768 <0.0001

Ageratina altissima 0.41 0.14 -0.57 1.01 0.00 0.00 0.3227 0.0449 0.3749

Amaranthus spp. 0.62 0.17 0.00 0.00 0.00 0.00 0.0071 0.0071 1.0000

Amelanchier arborea 0.00 0.00 0.00 0.00 -0.06 0.12 1.0000 0.7819 0.7819

Aralia nudicaulis 0.00 0.00 0.00 0.00 -0.36 0.41 1.0000 0.4010 0.4010

Arisaema triphyllum 6.19 0.27 5.92 0.14 2.00 0.00 0.2864 <0.0001 <0.0001

Aristolochia spp. -0.08 0.13 0.00 0.00 -0.65 0.68 0.7299 0.3708 0.3437

Aster spp. 0.88 0.41 0.75 0.00 -0.06 0.13 0.4161 0.0499 <0.0001

Athryum filix-femina 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Betula alleghaniensis -0.24 0.52 -0.18 0.35 -0.26 0.26 0.5559 0.5503 0.5269

Betula lenta 3.63 0.18 4.82 0.60 5.03 0.25 0.0543 0.0007 0.4803

Boehmeria cylindrica 0.00 0.00 0.25 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Cardamine angustata 0.75 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Carex spp. 1.33 1.68 8.50 1.05 4.92 0.47 0.0001 0.0194 0.0047

Carya cordiformis 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Caulophyllum thalictroides 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Chamerion angustifolium -0.54 0.32 -0.17 0.19 -0.12 0.16 0.2505 0.2029 0.6499

Circaea lutetiana 0.00 0.00 0.00 0.00 -0.04 0.10 1.0000 0.8378 0.8378

Clematis virginiana 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Collinsonia canadensis -0.07 0.13 0.00 0.00 0.00 0.00 0.7341 0.7341 1.0000

Convallaria majuscula 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Cornus alternifolia 0.00 0.00 0.25 0.00 1.75 0.00 <0.0001 <0.0001 <0.0001

Dennstaedtia punctilobula 0.54 0.23 0.00 0.00 -0.83 1.26 0.0522 0.1813 0.3443

Dichanthelium clandestinum 0.07 0.47 0.87 1.17 2.00 0.00 0.2801 <0.0001 0.2091

Dioscorea villosa 0.43 0.13 0.42 0.14 0.04 0.25 0.7816 0.1330 0.1428

Dryopteris carthusiana 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Fagus grandifolia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Fraxinus americana -0.19 0.24 0.50 0.00 0.07 0.23 <0.0001 0.3070 <0.0001

Galium spp. 3.62 0.17 7.92 0.14 0.00 0.00 <0.0001 <0.0001 <0.0001

Geranium maculatum 0.00 0.00 0.00 0.00 -0.13 0.20 1.0000 0.6279 0.6279

Goodyera pubescens 0.00 0.00 -0.08 0.14 0.00 0.00 0.7064 1.0000 0.7064

 +N R v. NL N v. NL

δ p-value

R v. N

Taxon

R  +N+L 



 

163 

Table A-4 continued 

 

Mean SE Mean SE Mean SE

Graminoid -0.75 0.53 0.09 0.22 0.00 0.00 0.0895 0.1251 0.4407

Hexastylis virginica 7.75 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Impatiens pallida 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Lindera Benzoin 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Liriodendron tulipifera -26.69 13.93 -26.33 12.48 -7.09 4.13 0.5025 0.0755 0.0581

Lycopodium spp. 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Magnolia acuminata -0.07 0.32 -0.53 0.50 0.32 0.24 0.2933 0.2203 0.0683

Magnolia fraseri -0.06 0.12 0.00 0.00 0.50 0.00 0.7765 <0.0001 <0.0001

Medeola virginiana 2.81 1.19 0.75 0.00 1.31 0.26 0.0667 0.1381 0.0691

Monarda clinopodia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Monotropa uniflora -0.08 0.13 -0.08 0.14 0.00 0.00 0.7825 0.7280 0.7105

Nyssa sylvatica 0.00 0.00 -0.16 0.22 0.00 0.00 0.5515 1.0000 0.5515

Osmorhiza clatonia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Ostrya virginiana 0.17 0.13 0.00 0.00 0.00 0.00 0.2709 0.2709 1.0000

Oxalis stricta 0.00 0.00 0.00 0.00 -0.09 0.14 1.0000 0.6867 0.6867

Oxydendron arboreum 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Parthenocissus quinquefolia 0.00 0.00 0.00 0.00 -0.06 0.12 1.0000 0.7762 0.7762

Phytolacca americana -17.62 8.52 -37.32 10.79 -21.32 13.49 0.0789 0.4304 0.1779

Podophyllum peltatum 0.00 0.00 0.75 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Polygantum biflorum -0.38 0.40 0.00 0.00 0.00 0.00 0.3695 0.3695 1.0000

Polygonum spp. 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Polystichum acrostichoides 6.27 1.39 8.18 0.28 2.28 0.29 0.1049 0.0031 <0.0001

Potentilla simplex -1.23 0.92 0.00 0.00 0.00 0.00 0.1019 0.1019 1.0000

Prenanthes altissima 0.00 0.00 0.75 0.00 0.50 0.00 <0.0001 <0.0001 <0.0001

Prosartes maculata 1.60 0.21 2.25 0.00 0.50 0.00 <0.0001 0.0005 <0.0001

prunus pensylvanica 0.87 1.21 -0.20 3.18 -0.92 1.04 0.4188 0.1541 0.3941

Prunus serotina -6.64 6.04 -17.44 10.99 -6.45 4.93 0.2050 0.4913 0.1895

Pycanthemum virginianum 0.00 0.00 0.00 0.00 -0.24 0.30 1.0000 0.4803 0.4803

Quercus alba 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Quercus prinus -0.31 0.29 0.25 0.00 0.50 0.00 <0.0001 <0.0001 <0.0001

Quercus rubra -0.15 0.33 0.17 0.29 0.39 0.41 0.3167 0.2074 0.4072

Robinia pseudoacacia -0.12 0.32 -0.43 0.44 -0.32 0.50 0.3754 0.4867 0.4846

Rosa carolina 3.00 0.00 3.25 0.00 9.75 0.00 <0.0001 <0.0001 <0.0001

Rubus spp. -8.49 4.47 0.90 4.17 12.10 4.85 0.0624 0.0005 0.0491

Rumex spp. 0.00 0.00 0.25 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Sambucus canadensis -0.78 0.60 -1.40 1.04 -0.03 0.09 0.3701 0.1549 0.0759

Sassafras albidum -2.58 3.47 -5.06 6.00 -2.26 3.08 0.3680 0.4898 0.3483

Smilax ecirrhata -0.09 0.15 -0.08 0.14 0.00 0.00 0.7596 0.6765 0.7093

Smilax rotundifolia 3.53 0.65 4.15 0.79 8.04 0.38 0.3113 <0.0001 <0.0001

Taxon

δ p-value

R  +N+L  +N R v. NL R v. N N v. NL
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Table A-4 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean SE Mean SE Mean SE

Streptopus lanceolatus 1.83 0.81 -0.23 0.73 0.94 0.13 0.0432 0.1696 0.0285

Thelypteris noveboracensis -2.46 1.60 0.01 0.37 -0.38 0.63 0.0727 0.1310 0.3949

Tilia americana 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Tussilago farfara 0.25 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Urtica dioica 3.69 9.08 23.96 3.81 -5.74 6.00 0.0041 0.1939 <0.0001

Viburnum acerifolium 0.00 0.00 -0.35 0.34 -0.03 0.09 0.3581 0.8810 0.3821

Viola spp. 47.98 14.94 51.74 8.45 3.12 16.93 0.4213 0.0147 <0.0001

Vitis spp. -25.56 6.03 -34.65 18.37 -10.97 3.02 0.3442 0.0134 0.0934

Zanthoxylum americanum 3.12 0.73 4.01 0.24 1.13 0.37 0.1715 0.0185 <0.0001

N v. NL

p-value

R v. NL R v. NR

Taxon

δ

 +N+L  +N 
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Mean SE Mean SE Mean SE

Acer pensylvanicum -2.59 1.99 0.62 1.37 -1.28 0.97 0.0942 0.3177 0.1437

Acer rubrum 48.27 3.53 22.32 1.24 26.79 2.49 <0.0001 <0.0001 0.0712

Acer saccharum 0.11 0.17 -0.08 0.13 0.00 0.00 0.3411 0.4436 0.7253

Actaea pachypoda -3.05 2.71 0.00 0.00 0.00 0.00 0.3146 0.3146 1.0000

Actaea racemosa 0.77 0.49 0.00 0.00 -0.47 0.48 0.1065 0.0529 0.3531

Ageratina altissima 3.54 0.20 1.45 1.00 0.00 0.00 <0.0001 <0.0001 0.1090

Amaranthus spp. -0.12 0.16 0.00 0.00 0.00 0.00 0.6029 0.6029 1.0000

Amelanchier arborea 0.00 0.00 0.00 0.00 -0.12 0.16 1.0000 0.5957 0.5957

Aralia nudicaulis 0.00 0.00 0.00 0.00 -0.72 0.69 1.0000 0.3208 0.3208

Arisaema triphyllum 1.38 0.32 0.17 0.14 2.50 0.00 0.0042 <0.0001 <0.0001

Aristolochia spp. -0.14 0.17 0.00 0.00 -2.33 2.09 0.5563 0.3158 0.3157

Aster spp. 0.24 0.52 0.25 0.00 0.03 0.26 0.6368 0.3973 0.4669

Athryum filix-femina 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Betula alleghaniensis -1.19 0.72 -0.25 0.25 -0.59 0.38 0.1521 0.2922 0.3287

Betula lenta 1.83 0.22 2.89 1.05 4.53 0.38 0.1933 <0.0001 0.0622

Boehmeria cylindrica 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Cardamine angustata 0.50 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Carex spp. -4.66 3.55 4.69 1.06 -0.87 1.30 0.0029 0.1718 0.0003

Carya cordiformis 0.25 0.00 0.25 0.00 0.00 0.00 1.0000 <0.0001 <0.0001

Caulophyllum thalictroides 0.75 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Chamerion angustifolium -0.76 0.30 -0.25 0.21 -0.19 0.20 0.1453 0.1064 0.5969

Circaea lutetiana 0.00 0.00 0.00 0.00 -0.12 0.16 1.0000 0.6097 0.6097

Clematis virginiana 0.00 0.00 0.25 0.00 0.00 0.00 <0.0001 1.0000 <0.0001

Collinsonia canadensis -0.14 0.17 0.00 0.00 0.00 0.00 0.5557 0.5557 1.0000

Convallaria majuscula 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Cornus alternifolia 0.00 0.00 0.00 0.00 0.25 0.00 1.0000 <0.0001 <0.0001

Dennstaedtia punctilobula -0.36 0.31 0.00 0.00 -1.91 2.36 0.2633 0.3188 0.3133

Dichanthelium clandestinum -0.60 0.60 -1.98 1.19 0.00 0.00 0.1708 0.3371 0.0336

Dioscorea villosa -0.14 0.17 0.42 0.13 -0.47 0.38 0.0183 0.3452 0.0063

Dryopteris carthusiana 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Fagus grandifolia 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Fraxinus americana 3.82 0.39 0.50 0.00 0.33 0.22 <0.0001 <0.0001 0.5517

Galium spp. 0.63 0.16 -0.08 0.14 0.00 0.00 0.0051 0.0071 0.7138

Geranium maculatum 0.00 0.00 0.00 0.00 -0.35 0.37 1.0000 0.3875 0.3875

Goodyera pubescens 0.00 0.00 -0.08 0.14 0.00 0.00 0.7171 1.0000 0.7171

R v. N N v. NL

Taxon

δ p-value

R  +N+L  +N R v. NL

Table A-5. List of differences in number of individuals per 5 m2 between a simulated 

assemblage level thinning distribution and observed density (δ) between 1997 and 2011 among 

REF (R), +N, and +N+L treatments. Bold p-values indicate significant differences based on a 

sequential Bonferroni test of probability tests. 
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Mean SE Mean SE Mean SE

Graminoid 4.44 0.54 1.66 0.34 1.75 0.00 <0.0001 <0.0001 0.5658

Hexastylis virginica 0.25 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Impatiens pallida 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Lindera Benzoin 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Liriodendron tulipifera -36.23 11.81 -18.34 4.72 -13.64 6.11 0.0797 0.0427 0.2748

Lycopodium spp. 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Magnolia acuminata -0.48 0.39 0.24 0.31 -0.11 0.38 0.1038 0.3087 0.2964

Magnolia fraseri -0.08 0.14 0.00 0.00 0.00 0.00 0.7025 0.7025 1.0000

Medeola virginiana 3.33 2.45 1.50 0.00 5.09 0.65 0.2569 0.2922 <0.0001

Monarda clinopodia 0.00 0.00 0.00 0.00 2.00 0.00 1.0000 <0.0001 <0.0001

Monotropa uniflora -0.14 0.17 -0.17 0.19 0.00 0.00 0.6603 0.5558 0.4763

Nyssa sylvatica 0.00 0.00 -0.34 0.34 0.00 0.00 0.3657 1.0000 0.3657

Osmorhiza clatonia 0.25 0.00 0.00 0.00 0.00 0.00 <0.0001 <0.0001 1.0000

Ostrya virginiana -0.14 0.17 0.00 0.00 0.00 0.00 0.5556 0.5556 1.0000

Oxalis stricta 0.00 0.00 0.00 0.00 -0.08 0.14 1.0000 0.7111 0.7111

Oxydendron arboreum 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Parthenocissus quinquefolia 0.00 0.00 0.00 0.00 -0.12 0.16 1.0000 0.5989 0.5989

Phytolacca americana -23.65 7.14 -33.78 10.60 -51.63 36.27 0.2207 0.3014 0.3442

Podophyllum peltatum 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Polygantum biflorum -0.36 0.38 0.00 0.00 0.00 0.00 0.3902 0.3902 1.0000

Polygonum spp. 0.00 0.00 0.75 0.00 54.75 0.00 <0.0001 <0.0001 <0.0001

Polystichum acrostichoides 1.24 2.22 2.44 0.28 3.73 0.74 0.3443 0.1644 0.0897

Potentilla simplex -2.00 1.55 0.00 0.00 0.00 0.00 0.1051 0.1051 1.0000

Prenanthes altissima 0.00 0.00 0.00 0.00 0.25 0.00 1.0000 <0.0001 <0.0001

Prosartes maculata -0.27 0.29 0.00 0.00 0.00 0.00 0.4096 0.4096 1.0000

prunus pensylvanica -2.66 1.12 -4.82 6.66 2.99 1.70 0.3517 0.0017 0.1506

Prunus serotina -20.03 9.02 -20.13 10.70 -11.70 6.89 0.5051 0.2385 0.2654

Pycanthemum virginianum 0.00 0.00 0.00 0.00 -0.49 0.49 1.0000 0.3429 0.3429

Quercus alba 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Quercus prinus -0.32 0.29 0.00 0.00 0.25 0.00 0.2950 <0.0001 <0.0001

Quercus rubra -0.32 0.39 1.25 0.37 -0.56 0.92 0.0047 0.4823 0.0261

Robinia pseudoacacia 0.04 0.38 -0.85 0.62 -1.90 1.37 0.1425 0.0783 0.2944

Rosa carolina 2.25 0.00 10.50 0.00 7.00 0.00 <0.0001 <0.0001 <0.0001

Rubus spp. -17.25 2.66 18.83 3.21 12.86 3.66 <0.0001 <0.0001 0.1179

Rumex spp. 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Sambucus canadensis -1.16 0.65 -1.04 1.05 -0.11 0.16 0.4674 0.0771 0.2939

Sassafras albidum -7.51 4.67 -14.53 9.22 -10.25 6.00 0.2686 0.3725 0.3681

Smilax ecirrhata -0.21 0.20 -0.08 0.14 0.00 0.00 0.5053 0.3816 0.7208

Smilax rotundifolia 3.39 0.92 6.23 1.29 10.49 0.79 0.0485 <0.0001 0.0006

R v. N

Taxon

δ p-value

N v. NLR  +N+L  +N R v. NL

Table A-5 continued 
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Table A-5 continued 

 

 

 

 

 

 

 

 

 

 

Mean SE Mean SE Mean SE

Streptopus lanceolatus 2.69 1.62 3.80 0.72 0.28 0.26 0.3307 0.0856 0.0001

Thelypteris noveboracensis -0.55 3.18 6.61 0.35 1.67 0.59 0.0021 0.2767 <0.0001

Tilia americana 0.00 0.00 0.00 0.00 0.25 0.00 1.0000 <0.0001 <0.0001

Tussilago farfara 0.00 0.00 0.00 0.00 0.00 0.00 1.0000 1.0000 1.0000

Urtica dioica 1.84 8.65 -3.10 3.71 -18.08 15.67 0.2985 0.1357 0.2258

Viburnum acerifolium 0.00 0.00 -0.18 0.23 -0.11 0.16 0.5276 0.6294 0.6460

Viola spp. 90.75 25.54 46.43 12.68 4.22 15.11 0.0691 0.0025 0.0131

Vitis spp. -52.88 10.76 -34.83 6.82 -30.32 7.38 0.0865 0.0521 0.3219

Zanthoxylum americanum -1.75 1.00 0.34 0.34 -0.43 0.42 0.0217 0.1383 0.1205

N v. NLR  +N+L  +N R v. NL R v. N

Taxon

δ p-value



 

168 

Appendix B. R code for herbaceous layer simulation 
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Species Metrics Calculation 

 
library(vegan) 
#~~~~~~~~~~~~~ 
 
##Fork Mountain 1996 
 
plots <- read.csv("fm96_sum.csv") 
row.names(plots) <- c("NS1","LIME1","WT1","WT2","NS2", 
"LIME2","LIME3","NS3","WT3","NS4","LIME4","WT4") 
 
specnumber(plots) 
H<-diversity(plots) 
H 
J<-H/log(specnumber(plots)) 
J 
abun<-rowSums(plots) 
 
nsr<-mean(rich[c(1,5,8,10)]);lir<-mean(rich[c(2,6,7,11)]);wtr<-mean(rich[c(3,4,9,12)]) 
nsH<-mean(H[c(1,5,8,10)]);liH<-mean(H[c(2,6,7,11)]);wtH<-mean(H[c(3,4,9,12)]) 
nsJ<-mean(J[c(1,5,8,10)]);liJ<-mean(J[c(2,6,7,11)]);wtJ<-mean(J[c(3,4,9,12)]) 
 
nsr;nsH;nsJ;lir;liH;liJ;wtr;wtH;wtJ 
write.csv(H,"H.csv") 
write.csv(J,"J.csv") 
write.csv(rich,"rich.csv") 
write.csv(abun,"abun.csv") 
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
#END 
 
##Repeat for Fork Mountain 1997; 2001; 2006; and 2011 
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Bootstrap Thinning Simulation 

 
library(vegan) 
library(xlsx) 
se <- function(x) sd(x)/sqrt(length(x)) 
#~~~~~~~~~~~~~ 
 
##Fork Mountain 2001 – WT (REF) plots 
 
## Load initial dens data and select only the "WT", "NS", or "LIME" 
## plots from the matrix and apply appropriate row names, create a  
## vector named "len" that records the number of columns in the 
## original matrix 
dat <- read.csv("fm97_sum.csv") 
  plots <- dat[c(3,4,9,12),] 
  row.names(plots) <- c("WT1","WT2","WT3","WT4") 
  #plots <- dat[c(1,5,8,10),] 
  #row.names(plots) <- c("NS1","NS2","NS3","NS4") 
  #plots <- dat[c(2,6,7,11),] 
  #row.names(plots) <- c("LIME1","LIME2","LIME3","LIME4") 
len <- dim(plots)[2] 
 
## Determine initial densities of each plot and create a matrix  
## called "init.dens" and append it to the matrix "plots" 
plots <- cbind(plots,as.matrix(rowSums(plots))) 
colnames(plots)[len+1] <- "init.dens" 
 
## Load final abundance data and select the "WT", NS, or "Lime" plots from 
## the matrix and apply appropriate row names and create new matrices 
dat2 <- read.csv("fm01_sum.csv") 
  wtplots <- dat2[c(3,4,9,12),] 
  row.names(wtplots) <- c("fWT1","fWT2","fWT3","fWT4") 
  #nsplots <- dat2[c(1,5,8,10),] 
  #row.names(nsplots) <- c("fNS1","fNS2","fNS3","fNS4") 
  #liplots <- dat2[c(2,6,7,11),] 
  #row.names(liplots) <- c("fLIME1","fLIME2","fLIME3","fLIME4") 
 
## Determine the final densities of each final plot, create a matrix 
## of the abundances and append it to the matrix "plots," then  
## rename it as either "fin.wt.dense", "fin.ns.dens" or "fin.li.dens" 
  wtmat <- as.matrix(rowSums(wtplots)) 
  colnames(wtmat)[1] <- "fin.wt.dens" 
  plots <- cbind(plots,wtmat) 
  #nsmat <- as.matrix(rowSums(nsplots)) 
  #colnames(nsmat)[1] <- "fin.ns.dens" 
  #plots <- cbind(plots,nsmat) 
  #limat <- as.matrix(rowSums(liplots)) 
  #colnames(limat)[1] <- "fin.li.dens" 
  #plots <- cbind(plots,limat) 
 
## Create empty matrices to store the bootstrapped sample abundance means, 
## mean richness, and mean diversity values 
avmat <- matrix(nrow=0,ncol=len) 
rmat <- matrix(nrow=0,ncol=1) 
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hmat <- matrix(nrow=0,ncol=1) 
colnames(avmat) <- colnames(plots[1:len]) 
colnames(rmat) <- c("Richness") 
colnames(hmat) <- c("Hprime") 
 
## For loop - 15000 times -- select 4 plots randomly, with replacement, then 
## randomly sample the abundance data from each plot, without replacement, 
## using the final abundance value as the abundances of "random survival" 
for(i in 1:15000){ 
ran <- plots[sample(nrow(plots),size=4,replace=TRUE),] 
rare1 <- rrarefy(ran[1,1:len],ran[1,len+2]) 
rare2 <- rrarefy(ran[2,1:len],ran[2,len+2]) 
rare3 <- rrarefy(ran[3,1:len],ran[3,len+2]) 
rare4 <- rrarefy(ran[4,1:len],ran[4,len+2]) 
rich <- mean(c(rowSums(rare1 !=0),rowSums(rare2 !=0), rowSums(rare3  
 !=0), rowSums(rare4 !=0))) 
hprime <- mean(c(diversity(rare1), diversity(rare2), diversity(rare3),  
 diversity(rare4))) 
x <- list(rare1,rare2,rare3,rare4) 
y <- do.call(cbind, x) 
y <- array(y, dim=c(dim(x[[1]]), length(x))) 
avg <- apply(y,c(1,2),mean) 
avmat <- rbind(avmat,avg) 
rmat <- rbind(rmat,rich) 
hmat <- rbind(hmat,hprime) 
} 
 
## Calculate the "observed" average of the final plots - the values which  
## you will compare to the simulated distributions, along with the  
## "observed" standard error, richness and diversity 
  wtav <- t(as.matrix(colMeans(wtplots))) 
  wtse <- t(as.matrix(apply(wtplots,2,se))) 
  wtav <- rbind(wtav,wtse) 
  rownames(wtav) <- c("Mean","SE") 
  #nsav <- t(as.matrix(colMeans(nsplots))) 
  #nsse <- t(as.matrix(apply(nsplots,2,se))) 
  #nsav <- rbind(nsav,nsse) 
  #rownames(nsav) <- c("Mean","SE") 
  #liav <- t(as.matrix(colMeans(liplots))) 
  #lise <- t(as.matrix(apply(liplots,2,se))) 
  #liav <- rbind(liav,lise) 
  #rownames(liav) <- c("Mean","SE") 
 
## Export simulation and observed average and SE files 
h <- cbind(rmat,hmat) 
  write.csv(avmat, "wtsim01.csv") 
  write.csv(h, "wth01.csv") 
  write.csv(wtav, "wtav01.csv") 
  #write.csv(avmat, "nssim11.csv") 
  #write.csv(h, "nsh11.csv") 
  #write.csv(nsav, "nsav11.csv") 
  #write.csv(avmat, "lisim11.csv") 
  #write.csv(h, "lih11.csv") 
  #write.csv(liav, "liav11.csv") 
 
# END 
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Probability Tests for Bootstrap Simulation 

 
##Fork Mountain 2001 
 
## Read data *WORK YEAR BY YEAR 
wtsim <- read.csv("wtsim01.csv") 
nssim <- read.csv("nssim01.csv") 
lisim <- read.csv("lisim01.csv") 
wtob <- read.csv("wtav01.csv") 
nsob <- read.csv("nsav01.csv") 
liob <-read.csv("liav01.csv") 
cname <- c("spp","wtmeano","wtseo","wtmeans","wtses","wtdel","wtp","nsmeano","nsseo", 
 "nsmeans","nsses","nsdel","nsp","limeano","liseo","limeans","lises", 
 "lidel","lip","wtvndel","wtvnp","wtvnldel","wtvnlp","nvnldel","nvnlp") 
results <- matrix(nrow=0,ncol=25) 
colnames(results) <- cname 
 
##_______________________________________________________ 
## Make a vector of species names for both observed and simulated results (only need to use 
## one trmt.) and add a dummy "zero" column to the sim matrices 
 
obname <- colnames(wtob)[-1] 
simname <- colnames(wtsim)[-1] 
names <- union(obname, simname) 
 
dummy<-matrix(0,nrow=15000,ncol=1) 
wtsim<-cbind(wtsim,dummy);nssim<-cbind(nssim,dummy);lisim<-cbind(lisim,dummy) 
 
##_______________________________________________________ 
## Note – the following for loops were created around tests that were originally meant to be 
## applied manually, but later it they were all automated. Therefore, these loops are not 
## optimized for speed. 
 
for(i in names) { 
 
wtspp <- i 
 
if (i %in% names(wtob)) { 
 obcol <- which(colnames(wtob)==i) 
 wtobsmean <- wtob[1,obcol]; wtobsse <- wtob[2,obcol] 
 nsobsmean <- nsob[1,obcol]; nsobsse <- nsob[2,obcol] 
 liobsmean <- liob[1,obcol]; liobsse <- liob[2,obcol] 
} else { 
 wtobsmean <- 0; wtobsse <- 0 
 nsobsmean <- 0; nsobsse <- 0 
 liobsmean <- 0; liobsse <- 0 
} 
 
if (i %in% names(wtsim)) { 
 colmn <- which(colnames(wtsim)==i) 
 wtcolumn <- colmn;nscolumn <- colmn;licolumn <- colmn  
 wtsimmean <- mean(wtsim[,wtcolumn]); wtsimse <- sd(wtsim[,wtcolumn]) 
 nssimmean <- mean(nssim[,nscolumn]); nssimse <- sd(nssim[,nscolumn]) 
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 lisimmean <- mean(lisim[,licolumn]); lisimse <- sd(lisim[,licolumn]) 
} else { 
 colmn <- which(colnames(wtsim)=="dummy") 
 wtcolumn <- colmn;nscolumn <- colmn;licolumn <- colmn  
 wtsimmean <- 0; wtsimse <- 0 
 nssimmean <- 0; nssimse <- 0 
 lisimmean <- 0; lisimse <- 0 
} 
 
## Test 1 - Is the observed mean abundance of a species different than the  
## simulated mean abundance?  
##----------- 
 
wtdel <- wtobsmean-wtsimmean; nsdel <- nsobsmean-nssimmean; lidel <- liobsmean-lisimmean 
 
## p-value calculation 
if (wtobsmean<wtsimmean) { 
 wtfreq <- wtobsmean < wtsim[,wtcolumn] 
 wtp <- length(wtfreq[wtfreq==FALSE])/15000 
} else if (wtobsmean>wtsimmean) { 
 wtfreq <- wtobsmean > wtsim[,wtcolumn] 
 wtp <- length(wtfreq[wtfreq==FALSE])/15000 
} else if ((wtobsmean==0) & (wtsimmean==0)) { 
 wtfreq <- wtobsmean < wtsim[,wtcolumn] 
 wtp <- length(wtfreq[wtfreq==FALSE])/15000 
} else if (wtobsmean==wtsimmean){ 
 wtp <- 1 
} 
 
if (nsobsmean<nssimmean) { 
 nsfreq <- nsobsmean < nssim[,nscolumn] 
 nsp <- length(nsfreq[nsfreq==FALSE])/15000; nsp 
} else if (nsobsmean>nssimmean) { 
 nsfreq <- nsobsmean > nssim[,nscolumn] 
 nsp <- length(nsfreq[nsfreq==FALSE])/15000; nsp 
} else if ((nsobsmean==0) & (nssimmean==0)) { 
 nsp <- 1 
} else if (nsobsmean==nssimmean){ 
 nsp <- 1 
} 
 
 
if (liobsmean<lisimmean) { 
 lifreq <- liobsmean < lisim[,licolumn] 
 lip <- length(lifreq[lifreq==FALSE])/15000; lip 
} else if (liobsmean>lisimmean) { 
 lifreq <- liobsmean > lisim[,licolumn] 
 lip <- length(lifreq[lifreq==FALSE])/15000; lip 
} else if ((liobsmean==0) & (lisimmean==0)) { 
 lip <- 1 
} else if (liobsmean==lisimmean){ 
 lip <- 1 
} 
 
## Test 2 - Is the difference between the observed mean abundance and  
## simulated mean abundance different among treatments? 
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##----------- 
 
wtyi <- wtsim[,wtcolumn]; nsyi <- nssim[,nscolumn]; liyi <- lisim[,licolumn] 
wtdi <- wtobsmean-wtyi; nsdi <- nsobsmean-nsyi; lidi <- liobsmean-liyi 
wvnbd <- mean(nsdi)-mean(wtdi); wvlbd <- mean(lidi)-mean(wtdi); nvlbd <- mean(nsdi)-mean(lidi) 
 
## p-values 
if (mean(nsdi)<mean(wtdi)) { 
 wtnsdi <- nsdi < wtdi 
 wvnp <-length(wtnsdi[wtnsdi==FALSE])/15000; wvnp 
} else if (mean(nsdi)>mean(wtdi)) { 
 wtnsdi <- nsdi > wtdi 
 wvnp <-length(wtnsdi[wtnsdi==FALSE])/15000; wvnp 
} else if ((mean(nsdi)==0) & (mean(wtdi)==0)) { 
 wvnp <- 1 
} else if (mean(nsdi)==mean(wtdi)) { 
 wvnp <- 1 
} 
 
if (mean(lidi)<mean(wtdi)) { 
 wtlidi <- lidi < wtdi 
 wvlp <-length(wtlidi[wtlidi==FALSE])/15000; wvlp 
} else if (mean(lidi)>mean(wtdi)) { 
 wtlidi <- lidi > wtdi 
 wvlp <-length(wtlidi[wtlidi==FALSE])/15000; wvlp 
} else if ((mean(lidi)==0) & (mean(wtdi)==0)) { 
 wvlp <- 1 
} else if (mean(lidi)==mean(wtdi)) { 
 wvlp <- 1 
} 
 
if (mean(nsdi)<mean(lidi)) { 
 linsdi <- nsdi < lidi 
 nvlp <-length(linsdi[linsdi==FALSE])/15000; nvlp 
} else if (mean(nsdi)>mean(lidi)) { 
 linsdi <- nsdi > lidi 
 nvlp <-length(linsdi[linsdi==FALSE])/15000; nvlp 
} else if ((mean(nsdi)==0) & (mean(lidi)==0)) { 
 nvlp <-1 
} else if (mean(nsdi)==mean(lidi)) { 
 nvlp <-1 
} 
 
 
## Compile and export results 
mtrix <- t(as.matrix(c(wtspp,wtobsmean,wtobsse,wtsimmean,wtsimse,wtdel,wtp,nsobsmean, 
 nsobsse,nssimmean,nssimse,nsdel,nsp,liobsmean,liobsse,lisimmean, 
 lisimse,lidel,lip,wvnbd,wvnp,wvlbd,wvlp,nvlbd,nvlp))) 
colnames(mtrix) <- colnames(results) 
#rownames(mtrix) <- wtspp 
results <- rbind(results,mtrix) 
 
} 
 
write.csv(results, "results11.csv") 
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# END 


